
43

Concerto: A Framework for Combined Concrete and

Abstract Interpretation

JOHN TOMAN, University of Washington, USA
DAN GROSSMAN, University of Washington, USA

Abstract interpretation promises sound but computable static summarization of program behavior. However,
modern software engineering practices pose significant challenges to this vision, specifically the extensive use
of frameworks and complex libraries. Frameworks heavily use reflection, metaprogramming, and multiple
layers of abstraction, all of which confound even state-of-the-art abstract interpreters. Sound but conservative
analysis of frameworks is impractically imprecise, and unsoundly ignoring reflection and metaprogramming
is untenable given the prevalence of these features. Manually modeling framework behaviors offers excellent
precision, at the cost of immense effort by the tool designer.

To overcome the above difficulties, we present Concerto, a system for analyzing framework-based ap-
plications by soundly combining concrete and abstract interpretation. Concerto analyzes framework imple-
mentations using concrete interpretation, and application code using abstract interpretation. This technique is
possible in practice as framework implementations typically follow a single path of execution when provided
a concrete, application-specific configuration file which is often available at analysis time. Concerto exploits
this configuration information to precisely resolve reflection and other metaprogramming idioms during
concrete execution. In contrast, application code may have infinitely many paths of execution, so Concerto
switches to abstract interpretation to analyze application code. Concerto is an analysis framework, and can
be instantiated with any abstract interpretation that satisfies a small set of preconditions. In addition, unlike
manual modeling, Concerto is not specialized to any specific framework implementation. We have formalized
our approach and proved several important properties including soundness and termination. In addition, we
have implemented an initial proof of concept prototype of Concerto for a subset of Java, and found that
our combined interpretation significantly improves analysis precision and performance.

CCS Concepts: • Software and its engineering→ Automated static analysis; Frameworks;

Additional Key Words and Phrases: abstract interpretation, state separation, reflection, framework-based
applications, metaprogramming

ACM Reference Format:

John Toman and Dan Grossman. 2019. Concerto: A Framework for Combined Concrete and Abstract
Interpretation. Proc. ACM Program. Lang. 3, POPL, Article 43 (January 2019), 50 pages. https://doi.org/10.1145/
3290356

1 INTRODUCTION

Modern applications are no longer batch jobs that use only simple data structures and a small
set of standard libraries. Instead, to improve productivity and portability, software engineers
increasingly rely on large, complex libraries and frameworks to provide the scaffolding on which an
application is built. To maximize flexibility, these frameworks are highly configurable and often use

Authors’ addresses: John Toman, University of Washington, USA, jtoman@cs.washington.edu; Dan Grossman, University
of Washington, USA, djg@cs.washington.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2019 Copyright held by the owner/author(s).
2475-1421/2019/1-ART43
https://doi.org/10.1145/3290356

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

https://doi.org/10.1145/3290356
https://doi.org/10.1145/3290356
https://doi.org/10.1145/3290356

43:2 John Toman and Dan Grossman

1 // FRAMEWORK

2 AppContext init(String configFile) {

3 XMLDocument config = XML.parseFile(configFile);

4 AppContext ctxt = ...;

5 for(Node n : config.getNode("delegates"))

6 ctxt.delegates.put(n.get("name"), n.get("class"));

7 // ...

8 ctxt.entryPoint = config.getNodeString("entryPoint");

9 return ctxt;

10 }

11 Object delegate(AppContext ctxt , String delegateName) {

12 String delegateClass = ctxt.delegates.get(delegateName);

13 Object d = Class.forName(delegateClass). newInstance ();

14 return d.getClass (). getMethod("handle"). invoke(d);

15 }

16 void main() {

17 AppContext ctxt = init("conf.xml");

18 Class.forName(ctxt.entryPoint). getMethod("start"). invoke(ctxt);

19 }

1 // APPLICATION

2 void start(AppContext ctxt) {

3 while(true) {

4 String request = Network.accept ();

5 Object resp;

6 if(request == "ping") {

7 resp = delegate(ctxt , "ping");

8 } else {

9 resp = delegate(ctxt , "pong");

10 }

11 Network.send(resp);

12 }

13 }

Fig. 1. A motivating example demonstrating the difficulty in analyzing framework applications. Specifically,

key control-flow decisions in delegate and main depend on the contents of conf.xml.

metaprogramming, reflection, embedded DSLs, etc. This increased flexibility comes at the cost of
precision and/or soundness when using abstract interpretation or other static analysis techniques
to reason about the behavior of framework-based applications.
For example, consider the invented code fragment in Fig. 1, which exemplifies code patterns

commonly found in frameworks. Here start is part of the application, whereas delegate, init, and
main are provided by the framework. The framework first calls init, which parses an application-
specific XML configuration file, then constructs an AppContext to hold the framework state. This state
consists of a delegates map, which maps names found in the configuration file to corresponding
class names, including the application’s entry point. The framework invokes the application’s entry
point on line 18. When the application calls delegate from start, the framework uses delegates to
instantiate the class associated with the delegateName argument and then reflectively invokes the
handle()method on the newly constructed object. Thus, the callees on lines 14 and 18 are determined
entirely by the configuration file, which is opaque to standard call-graph construction algorithms.

To analyze delegate and the reflective method invocation on line 18, analysis authors can choose
to: 1) unsoundly ignore the reflective call, 2) be extremely imprecise, e.g., by allowing reflective
calls to resolve to any method, or 3) based on the contents of conf.xml, build an application-specific
model of the framework behavior. Option 1 misses most of the application’s behavior, yielding
many false negatives; in Fig. 1, none of the application will be analyzed. Option 2 has the opposite
problem: many false positives and infeasible control-flow paths. Finally, option 3 requires signifi-
cant manual effort. Although this effort can be alleviated with framework-specific model generators
[Sridharan et al. 2011], creating a model generator for a framework is itself a monumental task.
Other analysis techniques also struggle with framework-based applications. Given a concrete

configuration file, the framework methods in Fig. 1 follow only one execution path, suggesting
a partially-concrete approach, such as concolic execution [Godefroid et al. 2005; Sen and Agha
2006; Sen et al. 2005]. However, the infinite “accept” loop in start is challenging even for state-of-
the-art concolic executors. Finitization of the loop can yield false negatives, and some execution
engines may fail to terminate. In contrast, a static analysis built using the monotone framework
[Kam and Ullman 1977] or abstract interpretation [Cousot and Cousot 1977, 1979b, 1992b] can
soundly approximate the infinite loop by computing a least fixed point over a series of equations.

A key insight of our approach is thatmany applications and frameworks follow this pattern: frame-
work implementations are difficult to analyze statically, but large parts are statically executable given

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:3

a concrete, application-specific configuration file. Statically executable refers to a program fragment
that: a) can be completely and deterministically evaluated at analysis time, and b) will yield the same
program state after evaluation at both runtime and analysis time; the init method is an example of
statically executable code. Conversely, application code contains unbounded control-flow paths. As
a result, a one-size-fits-all approach to program analysis is unwise for framework-based applications.

We present Concerto, a system for soundly combiningmostly-concrete interpretation, an exten-
sion to concrete interpretation we introduce and formalize in this paper, and abstract interpretation.
By combining these two techniques, Concerto leverages the strengths of both approaches while
avoiding their weaknesses. Concerto analyzes framework implementations using mostly-concrete
interpretation, and application code using abstract interpretation. Mostly-concrete interpretation
supports nondeterminism and over-approximation of sets of values, ensuring our combined inter-
pretation is sound while still terminating.

Our combined interpreter is itself an abstract interpreter that operates over a combined domain
of abstract and mostly-concrete states. By formalizing our combined approach within the theory of
abstract interpretation (AI) we can directly use techniques from the AI literature to prove soundness,
termination, etc. Concerto differs from partial evaluation, as the abstract and concrete interpreters
may yield into one another on demand, which allows greater concrete execution within framework
code (we illustrate this point further in Section 2). Concerto is analysis agnostic and can be used
with any analysis that satisfies a modest set of conditions. It is provably sound: integrating any sound
abstract interpretation that satisfies these conditions into Concerto yields a sound, combined
analysis. In addition, we have shown that abstract interpretations that satisfy a small, additional
set of conditions can provably expect equal or greater precision when used with Concerto.
Key to our approach is the observation that framework code does not directly manipulate ap-

plication state and vice versa. This state separation allows Concerto to partition a program state
into two disjoint representations: a mostly-concrete representation used to model the framework
state, and an abstract representation for application state. The mostly-concrete component of Con-
certo may therefore manipulate its portion of the program state while remaining agnostic about
the abstract representation used by the abstract interpretation component, and vice versa.
We have implemented an initial proof of concept of Concerto for a subset of Java. We have

demonstrated the flexibility of Concerto by incorporating three different analyses with differ-
ent abstract domains into this prototype. We found that using Concerto significantly increased
precision across all analyses when applied to a difficult-to-analyze framework implementation.

2 OVERVIEW

We will first informally describe how Concerto operates on the program in Fig. 2, which is written
in a simple language we will callMap. Among other features,Map supports I/O, reflection, maps
which are sufficient to illustrate the core of our technique. This program and language will also
serve as our running example as we formalize our approach in the remainder of this paper. We
will later formalize a language parameterized by base constants and operations into which we can
embed the Map language.
In Fig. 2 the framework code is in the left column and the application code in the right. On

lines 2–9, the framework opens an (application-provided) configuration file, and creates a map
m from application-specific identifiers to procedure names. The application start point, s, is then
called with m as its argument. The only other framework code is dispatch, which uses the map
produced in main to look up a procedure name associated with k and invoke the named method.
The invoke intrinsic calls the procedure named by the first argument with the remaining arguments.
The application-specific logic is implemented in the procedures s, f, g, h, and i.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:4 John Toman and Dan Grossman

1 proc main() {

2 f = open("config");

3 m = empty;

4 k = read f;

5 while(k != "") {

6 v = read f;

7 m = set m k v;

8 k = read f;

9 }

10 // [m 7→ ["b" 7→ "f", "a" 7→ "i"]]
11 s(m);

12 }

13 proc dispatch(k, arg , m) {

14 // from g:

15 // [m 7→ ["b" 7→ "f", "a" 7→ "i"], arд 7→ {+}]
16 // from h:

17 // [m 7→ ["b" 7→ "f", "a" 7→ "i"], arд 7→ {−}]
18 callee = get m k

19 invoke(callee , arg , m);

20 }

config
b
f
a
i

21 proc s(m) {

22 x = ⋆;

23 while(x >= 0) {

24 g(x, m);

25 x = ⋆;

26 }

27 h(x, m);

28 }

29 proc g(p, m) {

30 p = p + 1;

31 // [m 7→ ["b" 7→ "f", "a" 7→ "i"], p 7→ {+}]
32 dispatch("b", p, m);

33 }

34 proc f(p, m) {

35 if(p <= 0) {

36 error ();

37 } else {

38 print(p);

39 }

40 }

41 proc h(q, m) {

42 dispatch("a", -4, m);

43 }

44 proc i(q, m) {

45 print(q);

46 }

Fig. 2. Motivating example. The framework implementation (main and dispatch) uses many of the same

implementation idioms found in Fig. 1. The comments in green show the abstract and mostly-concrete states

that reach those program points during combined execution.

Although the program, framework, and language are significantly simpler than the full Java
language and the example shown in Fig. 1, they together pose many of the same challenges. In
particular, the reflective operation in dispatch depends on information in a configuration file stored
in a map. Many difficult-to-analyze framework features, such as dependency injection [Fowler
2004], or Android Intents [Barros et al. 2015], follow a similar pattern.
This program exemplifies the state separation hypothesis, which requires that the application

state is opaque to the framework implementation and similarly for framework state and application
code. Thus, the application state (in this case, the integer arguments to dispatch) are not interrogated
or manipulated by the framework, only threaded through the dispatch procedure and then passed
back into application procedures. Similarly, the framework state encapsulated in the dispatch map
m is not directly manipulated by the application, only threaded through application code to calls
back into dispatch.
In our experience, this hypothesis applies to most real-world implementations; to promote

reusability, applications and frameworks rarely directly manipulate each other’s state, instead com-
municating via method calls on opaque interface types. To validate this hypothesis, we performed
an informal evaluation of two large Java web frameworks, Spring1 and Struts.2 The majority of
framework state is contained in non-public object fields. We found that across the two frameworks
only 0.5% (64/12304) of fields had public visibility and thus the application cannot mutate the vast
majority of framework state. Our experience with other frameworks suggests this pattern is the
norm. Similarly, frameworks do not directly mutate application state; to maximize flexibility, frame-
works avoid depending on predetermined field names or class layouts, instead relying on well

1https://spring.io/
2https://struts.apache.org/

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

https://spring.io/
https://struts.apache.org/

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:5

main s

g h

dispatch

f i

(a) Sound but Imprecise Call-Graph

main s

g h

dispatch

(b) Unsound Call-Graph

main s

g h

dispatch

f i

dispatch

(c) Call-Graph with Concerto

Fig. 3. Call graphs produced by different analysis schemes. In (a), calls from dispatch to main and s can be ruled

out by matching argument arities. In (c), procedures executed (mostly-)concretely are given a dashed outline.

defined interfaces to communicate with the application. Together, these facts suggest that modern
Java framework implementations are a natural fit for our state separation hypothesis.

Concerto exploits this state separation to thread abstract values produced by the abstract inter-
preter through concrete interpretation and the abstract interpretation may do the same for concrete
values produced by concrete interpretation. (Concerto also includes support for the rare cases
where this hypothesis does not apply, see Section 8.4.) Section 3.1 formalizes a type-based state
separation that is natural in languages like Java.
Without additional knowledge about the program in Fig. 2, a standard abstract interpretation

not integrated with Concerto must make worst-case assumptions about read, and thus use an
extremely imprecise abstraction of the framework state in m. As a result, analysis of dispatch would
conclude that invoke may call any procedure. Thus, plain abstract interpretation cannot rule out
that a negative argument may flow from h through dispatch to f and that the error() statement is
reachable. On the other hand, ignoring invoke as though it is a no-op ignores important application
behavior. These two situations are illustrated in Figs. 3a and 3b, respectively.

Suppose now that we have the following domain knowledge about our program:

(1) The contents of the file config are available at analysis time and will not change between
analysis time and program runtime.

(2) config has the contents shown in Fig. 2

This information ensures that error() is never executed: dispatch will always call f with the positive
argument passed to it by g. However, even if an abstract interpretation has this information,
verifying that error() is unreachable requires an extremely precise semantics and representation
for maps. This can be achieved in this simple language, but, in practice, frameworks use much
more complicated data structures and abstractions, making precise analysis via pure abstract
interpretation unlikely. In contrast, Concerto integrated with a simple signedness analysis can
prove that the error() statement is unreachable, using a process we briefly sketch below.

2.1 Analyzing the Example

Concerto begins analysis of the program by concretely executing main(). Due to the domain-specific
knowledge described above, the initialization loop is statically executable. Thus, Concerto opens
the file "config" and runs the loop to completion. When the loop terminates, m holds the map ["b" 7→
"f", "a" 7→ "i"]. We stress that Concerto uses no application- or analysis-specific logic here:
Concerto simply performs concrete interpretation, opening the listed file and executing the loop.
At the call to the application entry point s on line 11, Concerto switches to abstract interpre-

tation, in this example a signedness analysis. A key assumption of Concerto is that framework

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:6 John Toman and Dan Grossman

code, once given a concrete configuration, is almost entirely statically executable. In contrast, appli-
cation code may deal with nondeterministic inputs, giving rise to unbounded loops like the one on
lines 23–26. Although concrete execution will naturally fail to terminate on the loop in s, abstract
interpretation can easily over-approximate the loop.

When switching to abstract interpretation, Concerto transforms the concrete program state at
the call-site to the abstract representation used by the abstract interpreter. We describe this process
in more detail in Section 4.3. In this example, the signedness analysis begins in the abstract state:
[m 7→ ["b" 7→ "f", "a" 7→ "i"]]. The abstract interpreter has not abstracted away the framework
state; instead, the signedness analysis has reused the concrete value directly for the value ofm.
However, the abstract interpreter does not need to implement concrete map semantics or other-
wise “understand” this representation. Due to the state separation hypothesis described above, any
map operations on m occur in framework code, which is not analyzed using abstract interpretation.
In the while loop of s, the signedness analysis analyzes the call to g, which itself calls the

framework’s dispatch procedure in the abstract state [m 7→ ["b" 7→ "f", "a" 7→ "i"],p 7→ {+}].
For this call, Concerto switches from abstract interpretation to mostly-concrete interpretation.
Concerto cannot switch back to fully-concrete interpretation soundly because the above abstract
state cannot be concretized to a single concrete state (or even a finite set of states): p abstracts the
infinite set of all positive integers. To avoidmaterializing an infinite set of concrete states, ourmostly-
concrete interpretation supports runtime values that are abstractions of infinite sets of values. To
represent the infinite set of possible values of p, the mostly-concrete interpreter reuses p’s abstract
value in the abstract interpreter, i.e., {+}. Concerto is agnostic to the domain of abstract values; had
the analysis chosen instead to represent integers with, say, intervals, the mostly-concrete interpreter
would also use intervals. As with the embedding of concrete maps into abstract states, the mostly-
concrete interpreter does not need semantics over the signedness domain: integer operations on
the application state only occur in application code which is not executed mostly-concretely.

As the value of m in the abstract caller state is ["b" 7→ "f", "a" 7→ "i"], this value can be directly
reused in the callee mostly-concrete state. Hence, mostly-concrete interpretation has no problem
concretely evaluating this call to dispatch with "b" and m to determine that control should transfer
back to the application by calling f with p.
At this final call back into the application, Concerto once again switches to abstract interpre-

tation, transforming the mostly-concrete state into an abstract state. The value of arg in the mostly-
concrete state is {+}, which becomes the value of p in the abstract interpreter. Using this abstract
value, the abstract interpreter can prove the true branch of the conditional is never taken. Analysis of
the call to h on line 27 proceeds similarly, again using mostly-concrete interpretation to precisely re-
solve the dispatch call. The final call-graph used during combined interpretation is shown in Fig. 3c.

The above process bears many similarities to partial evaluation [Futamura 1999; Mogensen 1995]
where the configuration file is treated as a static input. A sufficiently powerful partial evaluator
that supports metaprogramming (e.g., [Sullivan 2001]), could produce a residual program from
Fig. 2 that a signedness analysis could verify. However, suppose g used dynamic input to choose
between "b" and another procedure name as the argument to dispatch. In this scenario, the partial
evaluator would not fully reduce the body of dispatch, making the signedness analysis imprecise. In
contrast, under Concerto, provided the abstract interpretation faithfully tracks the two possible
procedure names, the mostly-concrete interpreter can precisely resolve the invoke operation to the
two potential callees.

2.2 Paper Outline

The remainder of this paper formalizes and elaborates on the process sketched above. Section 3
defines an intraprocedural language we will use and extend throughout this paper. Our formal

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:7

ℓ ::= ℓa | ℓf prog ::= (fstmtℓ | astmtℓ)∗

astmtℓ ::= ℓa : astmt fstmtℓ ::= ℓf : fstmt
astmt ::= goto ℓ | x = aexp | if x <=> y goto ℓ fstmt ::= goto ℓ | x = fexp | if x <=> y goto ℓ
aexp ::= y | bca | aop(v1, . . . , vn) fexpr ::= x | bcf | fop(v1, . . . , vn)

Fig. 4. Intraprocedural grammar, parameterized by language-specific choices for bcf , fop, bca , and aop.

language makes explicit the state separation hypothesis. We define a concrete semantics for this
language against which we prove Concerto sound, and describe the expected definition of ab-
stract interpreters.
Section 4 describes our main contribution: the combination of concrete and abstract interpre-

tation. Section 4.1 demonstrates how a naïve combination of concrete and abstract interpretation
yields a sound basis for combined interpretation, but one that is impractical due to the difficulty
of concretizing abstractions of infinite sets of values, as was the case with {+} above. Section 4.2
defines mostly-concrete interpretation which can handle abstractions of infinite sets of values. Sec-
tion 4.3 shows how combining abstract and mostly-concrete interpretation yields a sound inter-
pretation, and formalizes how mostly-concrete states are transformed into abstract states, and vice
versa. Finally, Section 4.4 defines a set of sufficient conditions for Concerto to match or exceed
the precision of an abstract interpretation.
Section 5 briefly discusses how we extend our formalism to procedures. Section 6 describes

a particular iteration strategy that is natural in practice and Section 7 sketches how we ensure
termination (while retaining soundness) under this iteration strategy using widening. We then
discuss our prototype implementation (Section 8), and the results of initial case studies (Section 9).
We close with a discussion of related work (Section 10) and future work (Section 11).

3 PRELIMINARY DEFINITIONS

3.1 Language Definition

Our core calculus is a simple imperative language with conditional/unconditional goto, variable
assignments, and constants and primitive operations over a set of types. We formalize a type-
based state separation by partitioning this set of types into application and framework types, and
restricting all operations on framework types to framework code and similarly for application types.

The formal grammar is given in Fig. 4.We assume two disjoint families of typesA (for application)
and F (for framework) and, with a slight abuse of notation, will use A (respectively F) as
a metavariable to range over the types in A (respectively F). Every variable is given a type
drawn from one of these families. bcf and fop range over base constants and primitive operations
respectively for types in F , and bca and aop do the same forA. All operations in fop have type (F ×
. . .×F) → F , and similarly for aop andA. The <=> nonterminal ranges over comparison operators.
In our language, ℓf label framework statements, and similarly for ℓa and application statements.

The label of a statement determines what operations may be performed by that statement: fops
and bcf may only appear in code labeled with ℓf , and similarly for aop, bca and ℓa . Further, we
require that comparisons in statements labeled with ℓa can only compare values of types inA, and
similarly for ℓf and F . However, statements labeled ℓf may move values between variables with
type A, and vice versa for statements labeled ℓa . As such, framework code must treat values of
typeA (“application values”) opaquely, threading them through to statements labeled ℓf . Similarly,
statements labeled ℓa treat F values opaquely. This syntactic restriction models the state separation
hypothesis described in Section 2. (In practice, this strict separation may be violated by, e.g.,
primitive types like int, library types, etc.; our implementation has special support for these shared
types as described in Section 8.4.)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:8 John Toman and Dan Grossman

The full operational semantics (omitted for space reasons) are defined in terms of the following
denotations and value domains, which we will use throughout the remainder of the paper. Let Va
be the set of all values with a type in A and similarly for Vf and F . Every aop has a denotation
JaopK : (Va × . . .Va) → Va ; we assume that aops are deterministic. In contrast, some fop opera-
tions may produce values that depend on the value of some environment model E, which models
nondeterminism due to file contents, network requests, etc. Formally, each fop has a denotation
JfopK : E ×Vf × . . . ×Vf → ℘(Vf × E), where ⟨v ′,E ′⟩ ∈ JfopK(E,v1, . . . ,vn) means executing fop
in environment E ∈ E with arguments v1, . . . ,vn produces a new environment model E ′ and result
v ′. To simplify presentation, we require that denotations are total functions; in practice, we assume
that the denotations gracefully handle runtime type errors (e.g., by returning a sentinel error value,
halting execution, etc.). Finally, we assume that J<=>K denotes into a binary relation over values
of the appropriate type, J<,>K is the negation of J<=>K, and Jbcf K and JbcaK produce values in Vf
and Va respectively corresponding to the interpretation of those constants.
Although the result of fops depend on the current environment E, in some cases we may have

a priori information such that a seemingly nondeterministic fop, i.e., reading a file, is effectively
deterministic. For example, in Section 2, we exploited domain specific information about runtime
contents of the configuration file to precisely execute the initialization loop. We account for this
knowledge by allowing hypotheses on the domain of E. For example, if E models file-system
contents, and we have a priori knowledge that a file f always has content c at runtime, we can
restrict E to include only models where the file f has contents c .

Throughout the rest of this paper we assume that we are operating on some arbitrary program
written in this language and that the relations pred and succ are defined with the obvious definitions
and there is a map prog from labels to unlabeled statements.

Example 3.1 (Map Language). We can encode theMap language and state separation of Section 2
in this language framework as follows. Control-flow constructs (if/while) can be encoded using the
goto representation defined in Fig. 4; we defer discussion of procedures to Section 5.

We takeA = {int }, i.e., the type of machine integers, with bca defined to be integer constants, aop
to be the usual arithmetic operations, andVa as machine integers. We next define F = {File, Str,M},
whereM is the domain of maps from strings to strings, and instantiate fop with the following:

open : Str → File read : File → Str set :M × Str × Str → Str get :M × Str → Str

We define bcf as the set of literal string constants and empty :M which is an empty map. Finally,
we take Vf = STR ∪ FileContents ∪ (STR → STR), where STR is the set of string values and
FileContents is a finite stream of STR values. Given the syntactic constraints on where aops and
fops may appear, this instantiation encodes that the application may not manipulate the framework
dispatch map m, nor may the framework manipulate integers received from the application.

Finally, the domain of environment models E is a map from strings to file contents, i.e., STR →
FileContents. We encode the information about the configuration file by requiring that: E = {e |
e ∈ STR → FileContents ∧ e["config"] = ⟨"b", "f", "a", "i"⟩} □

3.2 Concrete Properties

Concerto targets abstract interpretations where the approximated concrete property is the set of
reaching concrete states that may occur during program execution. In the intraprocedural language
described thus far, a concrete state is a valuation for the variables in the program plus an environment
model. Formally, a concrete state is defined as: S = E × (X → V) where V = Va ∪Vf ∪ {⊥V }, X
is the domain of variables appearing in a program, E is type of environment models described in
Section 3.1, and ⊥V is a sentinel “uninitialized” value. We assume the type system is sound, i.e.,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:9

F (r)[ℓ◦ { ℓ•] =
⊔

p∈pred (ℓ)
in∈r [p•{ℓ◦]

stepF (in, ℓ) ⊔

⊔
e∈ιE stepF (⟨ιS , e⟩, ℓ) ℓ = s
∅ o .w .

F (r)[p• { ℓ◦] =

{⟨s, E⟩ |⟨s, E⟩ ∈ r [p◦ { p•] ∧ s[x]J<=>Ks[y]} proд[p] = if x <=> y goto ℓ

{⟨s, E⟩ |⟨s, E⟩ ∈ r [p◦ { p•] ∧ (s[x]J<,>Ks[y]) } proд[p] = if x <=> y goto ℓ′

r [p◦ { p•] o .w .

stepF (⟨in, E⟩, ℓ) =

{⟨in, E⟩} prog[ℓ] = if ... ∨ goto ...
{⟨in[x 7→ in[y]], E⟩} prog[ℓ] = x = y
{⟨in[x 7→ JcK, E⟩} prog[ℓ] = x = c
{⟨in[x 7→ JaopK(in[v1], . . . , in[vn])], E⟩} prog[ℓ] = x = aop(v1, . . . , vn)
{⟨in[x 7→ r], E′⟩ | ⟨r, E′⟩ ∈ JfopK(E, in[v1], . . . , in[vn]) } prog[ℓ] = x = fop(v1, . . . , vn)

Fig. 5. Concrete semantic function. c is any constant of typeA or F and JcK is its corresponding denotation.

for any concrete state s arising during execution: type (x) ∈ F ⇒ s[x] ∈ Vf and type (x) ∈ A ⇒
s[x] ∈ Va , and that all variables must be defined before use, i.e., a program never observes ⊥V .

Next, define a domain of flow edges L as:L = {ℓ◦ { ℓ•}∪ {p• { ℓ◦ | p ∈ pred (ℓ)}, where ℓ◦ and
ℓ• respectively denote the “entrance to” and “exit from” ℓ. Elements ℓ◦ { ℓ• of L correspond to the
flow of program control through the statement labeled ℓ, whereas an element p• { ℓ◦ corresponds
to the flow from some predecessor p to ℓ. When convenient, we will abbreviate ℓ◦ { ℓ• as simply
ℓ. We will use ℓ⃗ to represent an arbitrary element of L.
Our domain of concrete properties is R = L → ℘(S), which forms a complete lattice, defined

pointwise over edges; the powerset of states also forms a complete lattice with the usual definitions.
We now define the concrete semantic function, F : R → R, the least fixed-point of which is a

complete set of reaching states for a program. That is, for every ℓ⃗ ∈ L, if ⟨s,E ′⟩ ∈ (lfp F)[ℓ⃗] then
there is some execution that flows through edge ℓ⃗ yielding ⟨s,E ′⟩. The full definition of F is given
in Fig. 5. We assume program execution begins at a single, distinguished label s . Program start
is modeled with the second term in the definition of F (r)[ℓ◦ { ℓ•]: ιE is a set of possible initial
environments, and ιS is a distinguished start state which maps all variables to ⊥V .

3.3 Abstract Properties

Concerto is designed to combine mostly-concrete execution with an abstract interpretation defined
as follows. We assume that sets of reaching concrete states are over-approximated by the complete
lattice Ŝ with ordering and least upper bound operator ⊑Ŝ and ⊔Ŝ respectively. (We will use ⊑D
to indicate a partial order on a domain D.) The domain of abstract properties, R̂ = L → Ŝ , also
forms a complete lattice defined by the pointwise extension of ⊑Ŝ and ⊔Ŝ . We further assume that
the domain R̂ forms a Galois connection with the domain of concrete properties R, defined by
the abstraction and concretization functions αA and γA. We use the standard notation R −−−−→←−−−−

αA

γA
R̂

to denote this connection. The abstract semantics of the abstract interpretation are given by a
monotone abstract semantic function F̂ : R̂ → R̂. We assume that this function is a sound abstraction
of F according to the above Galois connection, i.e., αA ◦ F ⊑R→R̂ F̂ ◦ αA,3 whence by [Cousot and
Cousot 1979b] we have that αA (lfp F) ⊑R̂ lfp F̂ . In other words, the reaching states computed by the
least fixed point of F are soundly over-approximated according to αA by the least fixed point of F̂ .

Thus, an abstract interpretation is defined by the 7-tuple ⟨R̂; Ŝ ; F̂ ;αA;γA;⊔Ŝ ;⊑Ŝ ⟩ where:

R̂ = L → Ŝ R −−−−→←−−−−
αA

γA
R̂ αA ◦ F ⊑R→R̂ F̂ ◦ αA

3Equivalently, αA ◦ F ◦ γA ⊑R̂→R̂ F̂ or F ◦ γA ⊑R̂→R γA ◦ F̂ .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:10 John Toman and Dan Grossman

F̂ (r̂)[ℓ◦ { ℓ•] = step+ (
⊔

p∈pred (ℓ)

r̂ [p], ℓ) ⊔
{
step+ (⊥, ℓ) ℓ = s
⊥ o .w .

F̂ (r̂)[p• { ℓ◦] =

r̂ [p◦ { p•][x 7→ lop ∩ {0, +}] if prog[s] = if x >= 0 goto ℓ ∧ lop ∩ {0, +} , ∅
⊥ if prog[s] = if x <= 0 goto ℓ′ ∧ lop ∩ {−, 0} = ∅
. . .

r̂ [p] o .w .

step+ (în, ℓ) =

în[x 7→ în[y]] prog[ℓ] = x = y
în[x 7→ în[y]FJaopKîn[z]] prog[ℓ] = x = y aop z
în[x 7→ {siдn (N) }] prog[ℓ] = x = N
în prog[ℓ] = goto ... ∨ prog[ℓ] = if ...

în[x 7→ ⊤F] prog[ℓ] = x = bcf ∨ prog[ℓ] = x = fop(v1, . . . , vn)

Fig. 6. The abstract semantics for our running signedness example. In the above, we use an infix notation for

aop as we assume all integer operations are binary. In the step+ function, N is an integer constant; in the

definition of F̂ , lop is r̂ [p◦ { p•][x] and s is the distinguished start label.

Example 3.2 (Signedness Analysis). The abstract state for the intraprocedural signedness analysis
discussed in Section 2 is Ŝ = Xf → ℘(Vf)

⊤ × Xa → ℘({−, 0,+}), and αA is defined as:

αA (r)[ℓ⃗] =
〈
λx : Xf .{s[x] | ⟨s, e⟩ ∈ r [ℓ⃗] ∧ s[x] , ⊥V }, λx : Xa .{sign(s[x]) | ⟨s, e⟩ ∈ r [ℓ⃗]}

〉
In the above definitions, Xf is the set of program variables with type in F , Xa are those with
types in A, and sign returns one of +, −, or 0 depending on the sign of its argument. We omit
the definition of γA as it can be derived from the definition of αA [Cousot and Cousot 1979b]. The
domain ℘(Vf)⊤ is the powerset domain of concrete values, extended with a special ⊤F value, which
represents any possible value of type F . We omit the definitions of ⊑Ŝ and ⊔Ŝ as they are standard.

The abstract semantic function F̂ is defined in Fig. 6. We have included only the comparison rules
necessary to verify the program in Fig. 2. We omit the definitions for Ĵ+K, Ĵ−K, etc. however Ĵ+K is
defined such that {0,+}Ĵ+K{+} = {+}, which again is sufficient to verify the example in Fig. 2. □

4 COMBINED INTERPRETATION

Given the language, semantic functions, and Galois connection defined in Section 3, we can de-
fine an initial, naïve attempt at combined interpretation. Intuitively, this strawman combination,
which we call Concerto0, analyzes framework code by applying the concrete semantic function F

at framework statements and applying the abstract semantic function F̂ at application statements.
Concerto0 translates between abstract and concrete states using abstraction and concretization
functions. This approach is sound (as proved in the following Section 4.1) but ultimately infeasible to
implement as it requires materializing infinite sets of states and values. To overcome this limitation,
we extend concrete interpretation to mostly-concrete interpretation. Mostly-concrete interpretation
avoids materializing infinite sets by using finite abstractions of sets of possible values. We then de-
fine the combination of mostly-concrete and abstract interpretation used by Concerto and prove it
sound. This combination must translate between different state representations. Unlike Concerto0,
we do not use explicit abstraction or concretization functions. Instead we formalize domain trans-
formerswhich soundly translate between state domains but are weaker than a Galois connection.We
close by proving when Concerto matches or exceeds the precision of plain abstract interpretation.

4.1 Naïve Combination

To motivate the need for mostly-concrete interpretation, we elaborate on the strawman Concerto0
and enumerate why it is impractical as a basis for combined analysis.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:11

Concerto0 executes framework code (statements with label ℓf) concretely and abstractly inter-
prets application code (statements with label ℓa). Our initial attempt at combined interpretation
therefore operates over a combined semantic domain that represents reaching states in the frame-
work with sets of concrete states, and reaching states in the application with the abstract state
domain Ŝ . However, the semantic function F , which models concrete execution, operates over the
fully-concrete domain R. Thus, the combined domain is injected into the fully-concrete domain by
applying a concretization function to the abstract states of the combined domain. Symmetrically, to
abstractly execute application code with the abstract semantic function F̂ , the combined domain
is injected into the abstract domain by applying an abstraction function to the reaching concrete
state component. After injection and applying both semantic functions, Concerto0 combines the
concrete results at framework statements and abstract results at application statements.

As the combined interpretation uses the highly precise concrete semantics for framework state-
ments (and therefore fops), Concerto0 can, at least in principle, precisely analyze framework code.
The concrete interpreter may also use the hypotheses on runtime environments to gain further
precision. For example, if the framework parses a configuration file as in the example of Section 2,
the concrete interpreter may simply open and parse the configuration file directly. However, not all
fops will be analysis-time deterministic, leading to an explosion in reaching concrete states. Further,
Concerto0 relies on an explicit concretization function which cannot be implemented in practice.

We formalize the informal description above as follows. First, we partition the space ofL into two
sets, LA = {ℓ

◦
a { ℓ

•
a } ∪ {ℓ

•
a { ℓ

◦ | ℓa ∈ pred (ℓ)} and LF = {ℓ
◦
f { ℓ

•
f } ∪ {ℓ

•
f { ℓ

◦ | ℓf ∈ pred (ℓ)}.
LA are flow edges originating in ℓa-labeled statements, and symmetrically for LF and ℓf . We define
this combined domain R0 and an abstraction function α0 : R → R0 as:

R0 = LF → S × LA → Ŝ α0 (r) = ⟨λℓ⃗ : LF .r [ℓ⃗], λℓ⃗ : LA.αA (r)[ℓ⃗]⟩

R0 is a complete lattice with the standard component-wise definitions of least upper bound and
ordering. As α0 is a monotone, complete join morphism there is some γ0 such that R and R0 form a
Galois connection. We further assume that the abstract and concrete states form a Galois connection
S −−−−→←−−−−αS

γS
Ŝ and that αA = α̇S and γA = γ̇S , where ḟ denotes the pointwise extension of f . Using αS

and γS , the injection functions described above are defined as:

injR (⟨m,m̂⟩)[ℓ⃗] =

m[ℓ⃗] ℓ⃗ ∈ LF

γS (m̂[ℓ⃗]) o.w .
injR̂ (⟨m,m̂⟩)[ℓ⃗] =

αS (m[ℓ⃗]) ℓ⃗ ∈ LF

m̂[ℓ⃗] o.w .

We can now define Concerto0’s combined interpretation function C0 : R0 → R0 as:

C0 (X) =
〈
F (injR (X)) |LF , F̂ (injR̂ (X)) |LA

〉
(1)

Theorem 1. C0 is sound, i.e., α0 ◦ F ⊑R→R0
C0 ◦ αA.

Proof. By the assumed soundness of F̂ , that injR̂ ◦ α0 = αA and that injR ◦ α0 is extensive. □

Theorem 1 establishesC0 is sound, but that doesn’t meanC0 is a good idea. In fact, it is

not. Using C0 as the basis for combined interpretation is impractical for the following reasons:
(1) Infinite Sets In many cases, concretizing an abstract state will yield an infinite number of

concrete states. For example, concretizing the abstract state [m 7→ ["b" 7→ "f", "a" 7→ "i"],p 7→
{+}] at the call to dispatch in Section 2 yields the following set of concrete states:⋃

e ∈E

{⟨e, [m 7→ ["b" 7→ "f", "a" 7→ "i"],p 7→ n]⟩ | n > 0}

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:12 John Toman and Dan Grossman

The concretization operation cannot be implemented in a meaningful way, as materializing this
infinite set is clearly impossible.
(2) Nondeterminism Not all framework operations will be deterministic, even with a priori

knowledge about the program’s runtime environment. For example, the exact user input entered
is impossible to know at analysis time. Instead, combined interpretation based on C0 would have
to enumerate over all possible values produced in all environments which is impractical from an
implementation perspective.
(3) Exponential Explosion in States Nondeterministic fops whose denotations return multiple

possible results will cause exponential explosions in the number of reaching states. For example, if n
states reach an fop that producesm unique results, the concrete semantics will generate n ·m result
states. This problem is similar to the exponential state explosion common in symbolic execution.
Thus, instead of combining abstract and concrete interpretation, Concerto combines abstract

and mostly-concrete interpretation, which addresses the above limitations. Section 4.2 describes
the semantics of mostly-concrete interpretation, Section 4.3 describes how to combine abstract
and mostly-concrete interpretation soundly, and finally Section 4.4 gives our precision result for
combined interpretation.

4.2 Mostly-Concrete Interpretation

Mostly-concrete interpretation introduces the following extensions to concrete interpretation:
Extension 1: The mostly-concrete interpreter supports runtime values that are finite abstrac-

tions of (potentially infinite) sets of values. For example, the abstract value {+} from Section 2
is a finite abstraction of an infinite set of numbers. Thus, when converting from an abstract to
mostly-concrete state, Concerto does not need to materialize an infinite (or unmanageably
large) set of concrete values; the abstract interpretation need only provide these abstractions.

Extension 2: When an fop would yield an infinite or unmanageably large set of values, the
mostly-concrete interpreter may instead use a special “unknown” value that represents “any
possible value.” The mostly-concrete semantics extend the concrete semantics to soundly
handle this value.

Extension 3: Themostly-concrete semantic domain is a map from flow edges to a singlemostly-
concrete state, which itself maps program variables to the abstractions of multiple possible
values mentioned in Extension 1 above. Thus, our mostly-concrete domain cannot track
relationships between program variables, i.e., it is non-relational.

Except for these extensions, the mostly-concrete semantics mirror the concrete semantics (hence the
name). Provided all fops are deterministic and environment agnostic,4 given a deterministic input
state, the results of mostly-concrete and concrete interpretation on framework code will coincide.
To represent multiple possible values for variables of type F , the mostly-concrete domain

uses powersets of values in Vf extended with a special “unknown” value. For A, the abstract
interpretation provides an abstraction domain Â that satisfies the properties described in Section 4.3.
Informally, the Â domain must be non-relational and path-insensitive. However, the abstract value
domain used internally by the AI has no such restriction.

Formally, the domain of reaching mostly-concrete states R̃ is:

R̃ = L → S̃ S̃ = (Xf → ℘(Vf)
⊤) × (Xa → Â)

As in Example 3.2, Xf and Xa are the sets of program variables with types in F andA respectively.
℘(Vf)

⊤ is the powerset domain of concrete values in F , extended with ⊤F , which is the “unknown”
4We say an fop is environment agnostic if it does not depend on the environment model, i.e., ∀e1, e2 ∈ E, v1, . . . , vn ∈
Vf . {v | ⟨v, _⟩ ∈ JfopK(e1, v1, . . . , vn) } = {v | ⟨v, _⟩ ∈ JfopK(e2, v1, . . . , vn) }

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:13

value described in Extension 2. The abstractions for variables with types in A in the mostly-
concrete interpreter are drawn from the domain Â provided by the AI; Â is assumed to form a
complete lattice. Â may or may not be used internally by the abstract interpreter. The domain of S̃
and R̃ form a complete lattice equipped with the standard pointwise join and ordering operators, as
well as top and bottom values. We further assume that the analysis defines a monotone complete
join-morphism αv : ℘(Va) → Â that abstracts a set of concrete values of type A to a value in Â.

Example 4.1 (Signedness Analysis). For the signedness analysis, Â is the same domain as used
in the abstract interpretation, ℘({−, 0,+}). αv is defined as: αv (I) = {sign(i) | i ∈ I } where sign is
defined as in Example 3.2. The join and ordering operators are set union and inclusion respectively.
In the example from Section 2, Concerto used the abstract value {+} for the value of arg in dispatch

which abstracted the set {n |n > 0}. □

Example 4.2 (Pentagons). Suppose instead the abstract interpretation of Section 2 had used a
relational domain like Pentagons [Logozzo and Fähndrich 2008], which is the interval domain
complemented with symbolic upper bounds. Then, Â = Intv, where Intv is the plain interval domain
[Cousot and Cousot 1977]. αv is defined as αv (I) = [lb I , ub I] (or ⊥ if I = ∅), where ub and lb
return the upper (resp. lower) bound of a set, or ∞ (resp. −∞) if no such bound exists in Z. The
join and ordering operators are the standard interval union and inclusion operators. Unlike the
above example, we cannot reuse the pentagon domain for Â for reasons discussed in Section 4.3. □

We now define an abstraction function αF as follows:

αF (r)[ℓ] =
〈
λx : Xf .V (r [ℓ],x), λx : Xa .αv (V (r [ℓ],x))

〉
WhereV is the reaching value set for a set of states and variable, defined as:V (S,x) = {s[x] |

⟨s, _⟩ ∈ S ∧ s[x] , ⊥V }. αF approximates a variable x of type F with exactly the set of (initialized)
values that reach x . Variables of type A are approximated by applying αv to the set of reaching
values. The approximation for a variable may not depend on the value of other variables, nor the
location at which the variable is being approximated.
As αv is a complete join morphism, αF is also a complete join-morphism, and thus by [Cousot

and Cousot 1979b], there exists some γF such that R −−−−→←−−−−αF

γF
R̃.

In Fig. 7, we define the mostly-concrete semantic function I⊤ : R̃ → R̃. The structure of I⊤ closely
mirrors that of the concrete semantic function F . Operations and comparisons on values from types
in F use the same operations as in F , but lifted to powersets of values. If one of the operands to a
comparison is unknown (i.e., ⊤F), then both branches are taken. The lifted version of IJfopK in Fig. 7
assumes that if any argument of an fop is unknown (again, ⊤F) then the result is also unknown.
Otherwise, the lifted version computes the result of applying the fop to every possible valuation of
arguments in any environment. This can yield large (or even infinite sets) but the semantics of Fig. 7
do not abstract these sets to the ⊤F value, which simplifies our formal presentation. In practice,
our implementation falls back on ⊤F for infinite to unmanageably large sets of values (Section 7).
Like concrete interpretation, mostly-concrete interpretation can exploit application-specific

knowledge and precisely model fops that would otherwise be treated as nondeterministic. As
described in Section 3.1, we model effectively deterministic fops by introducing hypotheses on the
domain of program environments E. Thus, despite taking the union over E, the definition of IJfopK
uses only environment models consistent with application-specific information.
Unlike fops, operations on values of types from A are modeled with imprecise, albeit sound,

semantics. Mostly-concrete interpretation can support arbitrary abstractions of A values precisely
because it makes no attempt to interpret aops and therefore does not need to “understand” the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:14 John Toman and Dan Grossman

I⊤ (r̃)[ℓ◦ { ℓ•] = step⊤ (
⊔

p∈pred (ℓ)

r̃ [p• { ℓ◦], ℓ) ⊔
{
step⊤ (⊥S̃ , ℓ) ℓ = s
⊥S̃ o .w .

I⊤ (r̃)[p• { ℓ◦] =

r̃ [p] IF T (r̃, p• { ℓ◦)

⊥ o .w .

IF T (r̃, p• { ℓ◦) =

s̃[x]JJ<=>Ks̃[y] p ∈ ℓf ∧ proд[p] = if x<=>y goto ℓ (2)

s̃[x]JJ<,>Ks̃[y] p ∈ ℓf ∧ proд[p] = if x<=>y goto ℓ′ (3)

true o.w. (4)

Where s̃ = r̃ [p◦ { p•] and J̃RK is the lifting of R defined by:

ṽ J̃RK⊤F ⊤F J̃RKṽ v ∈ ṽ ∧ v ′ ∈ ṽ ′ ∧ vJRKv ′ ⇒ ṽ J̃RKṽ ′

step⊤ (ĩn, ℓ) =

ĩn proд[ℓ] = if ... ∨ goto... (5)

ĩn[x 7→ ĩn[y]] proд[ℓ] = x = y (6)

ĩn[x 7→ {Jbcf K}] proд[ℓ] = x = bcf (7)

ĩn[x 7→ IJfopK(ĩn[v1], . . . , ĩn[vn])] proд[ℓ] = x = fop(v1, . . . , vn) (8)

ĩn[x 7→ ⊤Â] proд[ℓ] = x = aexp ∧ type (x) = A (9)

IJfopK(f̃1, . . . , f̃n) =

⊤F f̃1 = ⊤F ∨ . . . ∨ f̃n = ⊤F (10)⋃
f1∈f̃1, . . ., fn ∈f̃n

E∈E

{f ′ | ⟨f ′, _⟩ ∈ JfopK(E, f1, . . . , fn) } o.w. (11)

Fig. 7. Mostly-concrete semantic function. In I⊤, s is again the distinguished program start label.

R = (LF → S̃) × (LA → Ŝ) αC (r) =
〈
λ ℓ⃗ : LF .αF (r)[ℓ⃗], λ ℓ⃗ : LA .αA (r)[ℓ⃗]

〉
τ̃ : Ŝ → S̃ such that: ∀ℓ⃗, r : R .αF (r)[ℓ⃗] ⊑R̃ τ̃ (αA (r)[ℓ⃗]) ĩnj : R → R̃ where: ĩnj

(
⟨m̃, m̂⟩

)
[ℓ⃗] =

m̃[ℓ⃗] ℓ⃗ ∈ LF

τ̃ (m̂[ℓ⃗]) ℓ⃗ ∈ LA

τ̂ : S̃ → Ŝ such that: ∀ℓ⃗, r : R .αA (r)[ℓ⃗] ⊑Ŝ τ̂ (αF (r)[ℓ⃗]) înj : R → R̂ where: înj
(
⟨m̃, m̂⟩

)
[ℓ⃗] =

m̂[ℓ⃗] ℓ⃗ ∈ LA

τ̂ (m̃[ℓ⃗]) ℓ⃗ ∈ LF

Fig. 8. The combined mostly-concrete and abstract domain definitions, along with the domain transformers

and derived injection functions.

abstraction domain Â. However, Concerto does not suffer a precision loss from these coarse
semantics; due to the state separation hypothesis, all aops, bca and comparisons over A occur in
statements labeled ℓa , which are modeled in Concertowith abstract interpretation. In other words,
the mostly-concrete semantics for operations over A values are imprecise, but never actually
executed in the mostly-concrete interpreter.

Theorem 2. αF ◦ F ⊑R→R̃ I⊤ ◦ αF , i.e., I⊤ is a sound over-approximation of F .

Proof Sketch. By case analysis on the definitions of stepF and step⊤. The full proofs are available
in Appendix A.1. □

4.3 Combined Abstract and Mostly-Concrete Interpretation

We now show how to combine the mostly-concrete and abstract interpreters. The approach broadly
mirrors the strawman approach from Section 4.1. Specifically, combined interpretation operates
over a combined domain R. Like its strawman counterpart R0, R represents reaching states in the
application with abstract state Ŝ , but uses mostly-concrete states S̃ for the framework instead of
℘(S). Concerto’s combined interpretation also injects the combined state representation into the
“native” formats expected by the abstract and mostly-concrete interpreters. However, instead of
using abstraction and concretization functions as in Section 4.1, we use domain transformers to

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:15

soundly translate between state representations without requiring one of the abstract or mostly-
concrete state representation to be more precise than the other.

The combined analysis domain R is defined in Fig. 8, along with an abstraction function αC . As
αA and αF are complete join morphisms, αC is itself a complete join morphism, and thus there exists
some γC such that R and R form a Galois connection. The monotone functions τ̃ and τ̂ in Fig. 8 are
the domain transformers described above: τ̃ transforms a state from the abstract interpreter into a
mostly-concrete state, and τ̂ performs a transformation in the opposite direction. They are both
functions provided by the analysis that must fulfill the following conditions:

∀ℓ⃗, r : R.αA (r)[ℓ⃗] ⊑Ŝ τ̂ (αF (r)[ℓ⃗]) (12) ∀ℓ⃗, r : R.αF (r)[ℓ⃗] ⊑S̃ τ̃ (αA (r)[ℓ⃗]) (13)

Intuitively, conditions (12) and (13) state that the transformers must be consistent with the
target domain’s abstraction function. As a consequence, (13) implies that any relational information
present in R̂ must be discarded when moving to the non-relational domain R̃. The Â values produced
by αF are the result of a non-relational abstraction function αv , and by the inequality of Eq. (13), the
result of τ̃ can do no better. Despite this restriction on relational abstractions in the mostly-concrete
domain, the above requirements on the the domain transformers do not provide information about
the relative precision of the two domains. In fact, as mentioned above and illustrated below, it may
not necessarily be the case that one of the domains is more precise than the other.

Example 4.3 (Trivial Transformers). Consider the domain of Example 3.2 and the definition of αv
from Example 4.1. The two state representations are equal (Ŝ = S̃), and τ̃ = τ̂ = id . In other words,
the two domains have the same expressive power. □

Example 4.4 (Relational Domain). Suppose instead of representing integers with of the signedness
domain used in Example 3.2, we used the Pentagon domain of Example 4.2 with the corresponding
αv and Â = Intv . Then the abstract domain isXa → Intv ×Xa → ℘(Xa)×Xf → ℘(Vf)

⊤, where the
first two components are respectively the interval environment and strict upper bounds of integers
described in [Logozzo and Fähndrich 2008]. This abstract domain has used the ℘(Vf)⊤ representation
for framework variables. As with the embedding of Â in the mostly-concrete interpreter, this
embedding of mostly-concrete values into the abstract domain is feasible due to the state separation
hypothesis: i.e., fops will not appear in code analyzed by the abstract interpreter.

The domain transformers may be defined as:

τ̃ (⟨b, s,m⟩) = ⟨b,m⟩ τ̂ (⟨b,m⟩) = ⟨b, λx : Xa .∅,m⟩

That is, τ̃ discards the relational information from Ŝ when moving to S̃ , and τ̂ uses the top element
of the strict upper bound domain in the output (as the input mostly-concrete state does not have
any relational information). In this example, the abstract domain is more precise, i.e. Ŝ −−−→←−−−

τ̃

τ̂
S̃ . □

Example 4.5 (Trivial Abstract Domain). Consider a domain Xa → ℘({−, 0,+}) ×Xf → 1, where 1
is unary domain whose single element tt represents “any possible value”, i.e., the analysis does not
try to reason about maps, strings, or I/O. Then τ̃ (⟨m, z⟩) = ⟨m, λx : Xf .⊤F ⟩ and τ̂ (⟨m, t⟩) = ⟨m, λx :
Xf .tt⟩, and S̃ −−−→←−−−

τ̂

τ̃
Ŝ , i.e., the mostly-concrete domain is more precise than the abstract domain. □

Example 4.6 (Mixed Expressiveness). Finally, consider a combination of Examples 4.4 and 4.5
where integers (i.e., variables in Xa) are modeled in the abstract domain with pentagons, Â = Intv ,
but framework types (maps and strings) are modeled with the highly imprecise domain 1. Then
τ̃ (⟨b, s, z⟩) = ⟨b, λx : Xf .⊤F ⟩ and τ̂ (⟨b,m⟩) = ⟨b, λx : Xa .∅, λx : Xf .tt⟩. τ̃ and τ̂ do not form a

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:16 John Toman and Dan Grossman

LB(r)[ℓ◦ { ℓ•] = stepLB (⊔p∈pred (ℓ)r [p• { ℓ◦], ℓ) ⊔
{
stepLB (⊥S̃ , s) ℓ = s
⊥S̃ o .w .

LB(r)[ℓ•f { ℓ◦] = r [ℓ◦f { ℓ•f] LB(r)[ℓ•a { ℓ◦] = ⊥

stepLB (ĩn, ℓ) =

ĩn prog[ℓ] = if ... ∨ prog[ℓ] = goto ℓ (15)

ĩn[x 7→ ĩn[y]] prog[ℓ] = x = y (16)

ĩn[x 7→ ⊥Â] prog[ℓ] = x = bca ∨ prog[ℓ] = x = aop(v1, . . . , vn) (17)

ĩn[x 7→ ⊤F] prog[ℓ] = x = fop(v1, . . . , vn) ∨ prog[ℓ] = x = bcf (18)

Fig. 9. Semantic function defining a lower-bound on the precision of the abstract interpretation.

Galois connection: the abstract domain is more precise for integers, but the mostly-concrete domain
more precisely represents maps and strings. □

We are ready to define the combined interpretation function C : R → R as follows:

C (X) =
〈
I⊤ ◦ ĩnj (X) |LF , F̂ ◦ înj (X) |LA

〉
(14)

This definition closely mirrors Eq. (1). The injection functions ĩnj and înj (defined in Fig. 8) take
the place of injR and injR̂ and translate the combined domain into R̃ and R̂ by using the domain
transformers τ̃ and τ̂ respectively. The fully-concrete semantic function F has also been replaced
with the mostly-concrete semantic function I⊤.

We can state the soundness of C according to αC :

Theorem 3. αC ◦ F ⊑R→R C ◦ αC

Proof Sketch. By Theorem 2, the assumed soundness of F̂ , and from the fact that αF ⊑ ĩnj ◦αC
and that αA ⊑ înj ◦ αC . □

As C is a monotone function on a complete lattice it has a least fixed point [Tarski 1955]. From
Theorem 3 and [Cousot and Cousot 1979b] we then have that: αC (lfp F) ⊑ lfpC .

4.4 Conditions for Increased Precision

C is sound, but may not necessarily be more precise than the original function F̂ . We now discuss a
set of sufficient conditions for when C is at least as (if not more) precise as F̂ .
First, we define a function LB : R̃ → R̃ as shown in Fig. 9. Intuitively, LB provides a lower-

bound on the precision of the abstract semantic function; showing that I⊤ can “do better” than this
lower bound will imply that I⊤ provides improved precision compared to F̂ on framework code.
LB specifies an imprecise lower bound for modeling framework operations and comparisons, but
provides no lower bound on the precision for application operations or comparisons. However, as
LB is non-relational, the definition implies that F̂ must also be non-relational.
C is more precise (as defined below) if the following conditions hold:

τ̂ ◦ τ̃ = id LB ◦ ˙̃τ ⊑R̂→R̃
˙̃τ ◦ F̂ ∀U ⊆ Ŝ .̃τ (⊔U) = ⊔ŝ ∈U τ̃ (̂s) (19)

That is, if no precision is lost by moving to the domain S̃ and then back to Ŝ , if LB is a lower bound
on the precision of F̂ , and if τ̃ is a complete join morphism. In the above, ˙̃τ denotes the pointwise
extension of τ̃ .

As C and F̂ operate over different domains, we first introduce a function p̂roj : R̂ → R to project
the R̂ domain into the combined domain R:

p̂roj (̂s) = ⟨λℓ⃗ : LF .̃τ (̂s[ℓ⃗]), λℓ⃗ : LA .̂s[ℓ⃗]⟩

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:17

p̂roj uses τ̃ to translate abstract to mostly-concrete states, reversing the înj operation.
If the above conditions hold, we can prove:

Theorem 4. înj (lfpC) ⊑R̂ lfp F̂

Proof Sketch. From the assumptions in Eq. (19) and by case analysis on step⊤ and stepLB , it
can be shown that C ◦ p̂roj ⊑R̂→R p̂roj ◦ F̂ (Lemma 6 in the appendix), whence it follows by
straightforward transfinite induction (Lemma 7 in the appendix) that lfpC ⊑R p̂roj (lfp F̂). As
înj is monotone, we have: înj (lfpC) ⊑R̂ înj ◦ p̂roj (lfp F̂), whence we have înj (lfpC) ⊑R̂ lfp F̂ , as
înj ◦ p̂roj = id by Eq. (19). □

Theorem 4 states that the approximation of reaching states computed by the combined interpre-
tation function C is at least as precise as that computed by the abstract interpreter. The inequality
is not strict: whether Concerto matches or exceeds the precision of plain abstract interpretation
depends on the program and the abstract semantics and domain. As a trivial example, on a program
with only application statements (i.e., with labels drawn from LA) Concerto will necessarily do
no better than plain abstract interpretation.

Example 4.7 (Signedness Analysis). The signedness example of Section 2 satisfies the above
conditions, and thus combined interpretation with Concerto is at least as precise as plain abstract
interpretation. As both τ̃ and τ̂ are the identity function, parts 1 and 3 of Eq. (19) are trivially
satisfied. The abstract semantic function in Fig. 6 uses very coarse approximations of fop operations,
and therefore part 2 of Eq. (19) is also satisfied. □

5 PROCEDURES

Our formalism so far does not support procedures, but they are essential. Section 5.1 sketches
the addition of procedures to our formal language and extensions to the concrete and mostly-
concrete semantics. Section 5.2 then demonstrates that by restricting control transfers between the
framework and application to procedures calls and returns, Concerto does not need AI developers
to provide the full domain transformers (̃τ and τ̂) introduced in Section 4.3 since it suffices to
transform only parameter and return values across procedure boundaries. We delay until Section 8
how to extend our support for procedures to objects and methods in the style of Java.

5.1 Interprocedural Semantics

We assume a program now has the following form, where f ranges over procedure names:
prog ::= D∗ astmt ::= . . . | return x | x = f (y)

D ::= proc f (p){ (fstmtℓ | astmtℓ)∗} fstmt ::= . . . | return x | x = f (y)

We assume that procedure names are distinct, that there is a distinguished main procedure, and
that the distinguished program start label s is the first statement of this procedure.
For a procedure call statement labeled with ℓ, we assume there are two pseudo-labels: ℓc and

ℓr , corresponding to the point in program execution immediately before invoking the function
and immediately after the called function returns. We extend the succ and pred relations to include
these pseudo-labels. For a call-site labeled ℓ, if control may flow from label ℓ′ to ℓ, (ℓ′, ℓc) ∈ succ,
and similarly for (ℓr , ℓ′) and control-flow from ℓ to ℓ′. In addition, the entry point label of the callee
at ℓ is a successor of ℓc and the predecessor of ℓr is the return site label in the callee.

We extend the state definition to track the runtime stack: R = L → ℘(S∗×ℓ∗×E), where S∗ is a se-
quence of states S as defined in Section 3.2, and ℓ∗ is a sequence of statement labels. Intuitively, these
two components represent the runtime stack and the return locations for active procedure invoca-
tions respectively. We also assume that the domain of variables X includes a special return slot ρ.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:18 John Toman and Dan Grossman

F (r)[ℓ◦r { ℓ•r] =
⊔

p∈pred (ℓr)

{⟨s ◦ sr [x 7→ sc [ρ]], R, E⟩ |

⟨s ◦ sr ◦ sc , R, E⟩ ∈ r [p• { ℓ◦r]∧

⟨s ◦ sr , R, _⟩ ∈ r [ℓ◦c { ℓ•c]}

F (r)[p• { ℓ◦r] = {⟨s, R, E⟩ | ⟨s, R ◦ ℓ, E⟩ ∈ r [p]}

F (r)[ℓ•c { ℓ′◦] = {⟨s ◦ sr ◦ ιS [p 7→ sr [y]], R ◦ ℓ, E⟩ |

⟨s ◦ sr , R, E⟩ ∈ r [ℓc]}

F (r)[ℓ◦c { ℓ•c] =
⊔

p∈pred (ℓc)

r [p• { ℓ◦c]

I⊤ (r̃)[ℓ◦r { ℓ•r] =
⊔

p∈pred (ℓr)

r̃ [ℓc][x 7→ r̃ [p• { ℓ◦r][ρ]]

I⊤ (r̃)[p• { ℓ◦r] =r̃ [p]

I⊤ (r̃)[ℓ•c { ℓ′◦] =[p 7→ r̃ [ℓc][y]]

I⊤ (r̃)[ℓ◦c { ℓ•c] =
⊔

p∈pred (ℓc)

r̃ [p• { ℓ◦c]

step⊤ (ĩn, ℓ) =
{
ĩn[ρ 7→ ĩn[x]] prog[ℓ] = return x
as before o .w .

stepF (in, ℓ) =
{
in[ρ 7→ in[x]] prog[ℓ] = return x
as before o .w .

Fig. 10. Extensions to the semantic functions F and I⊤ to support procedures. In the above definitions, p is the

name of the parameter of the called procedures, y is the variable passed as the argument, and x is the variable

in the caller to which the result of the function is defined. ιS is a state where all variables are bound to ⊥V .

We extend the definitions of F and I⊤ given in Sections 3.2 and 4.2 respectively as shown in
Fig. 10 to handle these new statement forms and flow edges. We omit the updated definitions of F
and I⊤ at the distinguished start label, although they are the obvious extensions to the terms in
Figs. 5 and 7. We use ρ to store the return value of functions with return type F and A: we shall
assume that there are two different versions of ρ of the appropriate type. Finally,V is now defined
as:V (S,x) = {s[x] | ⟨s0 ◦ s, _, _⟩ ∈ S ∧ s[x] , ⊥V }.

We have proved (see Appendix B) that this updated definition of I⊤ is sound with respect to the
updated definition of F . If the abstract interpretation is also sound with respect to this updated
definition, and the τ̃ and τ̂ functions still fulfill the conditions in Section 4 then all the results of
the previous section still hold with no modifications to our formalisms or proofs.

5.2 Interprocedural Domain Transformers

We have so far treated procedure call and return as orthogonal to control-flow transfer between the
application and framework, i.e., procedure bodies could be amix ℓf and ℓa statements. In practice, we
require all transfers between the application and framework occur at procedure boundaries. In other
words, each procedure may only contain ℓa statements or ℓf statements. This restriction is entirely
reasonable: real frameworks encapsulate their functionality in methods/classes/modules/etc.: source
programs would not mix framework and application code in the same procedure.
This (non-)restriction also significantly simplifies how Concerto transfers values between ab-

stract and mostly-concrete interpretation. Recall that Concerto applies the domain transformers
at transitions between the application and framework. However, the above syntactic restriction
implies that Concerto needs the domain transformers only at procedure entry and exit. Further, at
procedure entry, the mostly-concrete interpreter can access only the program state reachable via the
parameters. Thus, instead of using τ̃ at application-to-framework calls, the AI may directly provide
mostly-concrete arguments to the mostly-concrete component, which then binds the arguments in
a empty local state. Similarly, we assume that when given mostly-concrete arguments the abstract
interpreter can construct a sound abstract procedure entry state. (This assumption is possible be-
cause our language is statically scoped and has no global variables, heaps are discussed in Section 8.)
As a consequence, instead of using τ̂ at framework-to-application calls, the mostly-concrete inter-
preter may provide mostly-concrete arguments to the AI, which binds them in an abstract empty
state, transforming the mostly-concrete values into a “native” abstract representation as necessary.

Concerto uses a similar process for return flows. Themostly-concrete semantics use the exit state
of a called procedure only to extract the procedure’s return value. Instead of using τ̃ at return flows
from the application to framework, the AI simply provides a mostly-concrete representation of the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:19

return slot ρ. We likewise assume that the AI is interested only in the value of ρ in callee exit states.
Thus, at framework-to-application return flows, the mostly-concrete interpreter may provide only
the mostly-concrete return value, which the AI transforms into a native representation as necessary.

The direct exchange of values sketched above obviates the need for implementations of τ̃ and τ̂ ,
but to retain soundness, the values exchanged must be consistent with those produced by some
τ̃ and τ̂ that satisfy the definitions given in Section 4.3. For example, consider an application-to-
framework call where the abstract entry state is ŝ . The mostly-concrete argument provided to the
mostly-concrete interpreter must therefore be τ̃ (̂s)[p] for some τ̃ , and where p is the parameter of
the called procedure. Thus, any valid domain transformers τ̃ and τ̂ provide correctness specifications
for the exchange of values. However, a trivial way to ensure soundness is to generate complete
definitions for some τ̃ and τ̂ , and hand-simplify the results of applying the transformers at procedure
call and return. For example, to correctly generate mostly-concrete return values at application-to-
framework return flows, it is sufficient to use a simplification of λŝ .̃τ (̂s)[ρ].
Context Sensitivity. The above discussion does not treat context-sensitivity in the abstract

interpretation. In our implementationwe have the AI provide functions to compute the callee context
at framework-to-application calls. Further the mostly-concrete semantics in Fig. 10 are context-
insensitive, which is not very precise in practice. In practice, we unroll the call-graph up to recursive
cycles in the mostly-concrete interpreter, effectively giving unlimited context-sensitivity. We discuss
these two techniques in Section 8.3. We have not formalized our approach to context-sensitivity,
although adapting our proofs and formalism is a straightforward, albeit tedious, extension.

6 ITERATION STRATEGY

We now briefly describe the iteration strategy used by Concerto. Our implementation runs mostly-
concrete and abstract interpreters in parallel until they converge to a local fixed-point on their
respective partitions of the program (framework and application code respectively). The results are
then exchanged between the two interpreters (under the syntactic restriction of Section 5.2, this
exchange is performed at procedure boundaries as described above) and the process repeats until
the overall process converges to a fixed-point. We refer to this process as subfixpoint iteration.

The subfixpoint iteration scheme sketched above is very similar to chaotic asynchronous iteration
with memory [Cousot 1977], with one key difference. Before starting iteration in the mostly-
concrete component, subfixpoint iteration discards results at framework statements computed
in previous rounds of subfixpoint iteration. In other words, after exchanging information with
the abstract interpretation component, the mostly-concrete component iterates a “fresh” mostly-
concrete interpreter, beginning with only information received from the abstract interpreter. We
have shown in Appendix C that this process converges to the least fixed point of C . Our proof
depends on the following property of subfixpoint iteration (Lemma 21 in the appendix): any
information discarded between runs of the mostly-concrete interpreter can be soundly recovered
with enough iterations in the next run of the mostly-concrete interpreter.

This iteration strategy justifies analyzing application-to-framework calls by spawning a fresh
mostly-concrete interpreter seeded with mostly-concrete arguments provided by the AI that flow
into the framework from the application. We describe this process in more detail in Section 8.

7 WIDENING AND FINITIZATION

Two significant challenges remain to a realizable implementation. First, although we have proved
that subfixpoint iteration converges to the least fixed point of C , it may not do so in finite time; the
domain R does not possess an ascending chain condition that will ensure convergence in finite
steps. Second, we have not yet guaranteed that mostly-concrete interpretation manipulates only

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:20 John Toman and Dan Grossman

finite sets of values. To address the first issue, we apply widening [Cousot and Cousot 1977] during
iteration. We address the second issue by forbidding infinite sets of values, and describe how the
mostly-concrete interpreter uses ⊤F in practice to avoid materializing infinite sets.
Widening. Following the vocabulary of [Bourdoncle 1993], we require two widening point sets

WA andWF for application and framework statements, respectively. A widening point set is a set
of statement labels such that, if during iteration the states at all widening points stabilize, then
the overall iteration stabilizes in a finite number of steps. We further require that if the states at
all widening points in two iteration sequences stabilize to the same set of values, then the two
sequences stabilize to the same result. We leave the choice ofWA up to the abstract interpretation,
although we expect most interpreters will use a variation on the strategy described by [Bourdoncle
1993]. In our mostly-concrete interpreter, we use the headers of unbounded loops and the entry
point of a representative method selected from recursive cycles (including sub-cycles).
We assume that the analysis provides widening operators ▽Â for values of type Â and ▽̂ for

abstract states Ŝ . From ▽Â, we derive a widening operator for mostly-concrete states:

⟨mf ,ma⟩▽̃⟨m
′
f ,m

′
a⟩ =

〈(
λx : Xf .

mf m′f [x] ⊑mf [x]
⊤F o.w .

)
,
(
λx : Xa .ma[x]▽Âm

′
a[x]
)〉

Given the above assumptions and definitions, we ensure termination as follows. We again iterate
the abstract and mostly-concrete interpreters in parallel, except we instrument the abstract seman-
tic function F̂ and I⊤ to apply widening operations at the locations in the widening point setsWA
andWF respectively. We have proved (Appendix D) that these individual iterations terminate in
a finite number of steps. After the two interpreters stabilize, they exchange results and the process
repeats; with the mostly-concrete interpreter again discarding previously computed information
as described above. This process stabilizes in a finite number of steps to an over-approximation
of lfpC (see Appendix D.1).

Precision. Section 4.4 gave conditions for when lfpC will be at least as precise as lfp F̂ . Whether
this precision result also translates to the widened subfixpoint iteration presented above will
depend on the choice of widening operators. As widening operators are not necessarily monotone,
the instrumented F̂ and I⊤ functions are not necessarily monotone either. Without monotonicity,
reasoning about the relative precision of subfixpoint iteration with widening is difficult. This result
is not surprising; as noted in [Cousot and Cousot 1992a], when using widening the order of iteration
can have a significant impact on the precision of the final result.

Finitization. Finally, to ensure Concertomanipulates only finite sets, we require that the AI does
not provide infinite arguments or return value representations to the mostly-concrete interpreter.
We also extend the definition of I⊤ to finitize the result of all fop operations. Whenever applying
fop to two arguments would produce an infinite set of values (or an otherwise impractically large
set, e.g., all 32-bit machine integers) the modified semantic function abstracts this set with ⊤F . This
finitization is sound, while avoiding materializing infinite sets in our implementation.

8 EXTENSIONS FOR A REALISTIC PROTOTYPE

We have implemented a prototype combined interpreter for a subset of Java.5 Our subset includes
1) interfaces and dynamic dispatch, 2) reflection, 3) dynamically sized arrays, and 4) (potentially)
unbounded loops. We include two primitives to simulate I/O. The first, read(), reads an integer
from a deterministic stream. This primitive models reading from a deterministic configuration file.
The second primitive, nondet() reads from a nondeterministic stream, which simulates, e.g., packets
received from the network or user input. While falling considerably short of the full complexity of
5Our implementation prototype is open-source and is available at https://github.com/uwplse/concerto.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

https://github.com/uwplse/concerto

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:21

Java, we can use these language features to effectively simulate some of the most difficult to analyze
code idioms we have encountered in real-world framework implementations (see Section 9).
Our prototype takes as input an abstract interpretation implementation which exposes basic

operations required by Concerto. We introduce these operations incrementally as we extend our
basic procedural language to support objects, methods, etc.

8.1 Objects and the Heap

We first consider only class-based objects with fields, deferring methods to Section 8.2 and prim-
itives, interfaces, and libraries to Section 8.4. We assume each concrete class belongs either to the
framework or the application, taking F to be the framework classes and A the application classes.
We also extend our concrete state to include a concrete heap: S = E× (X → V)×H . Object allocation
and field manipulation are defined via aops and fops that additionally side-effect the heap (we omit a
full formalization for space reasons). This formulation implies that framework code may not directly
manipulate the object fields of application classes and vice versa. However, as argued in Section 2,
real-world applications and frameworks almost exclusively communicate via functional interfaces.
By classifying each class as either framework or application, we can effectively partition the

program’s runtime heap H into Ha containing application objects and Hf containing framework
objects, i.e., S = E × (X → V) × Ha × Hf . We can then use different abstractions for Ha and Hf .
In the mostly-concrete interpreter, object operations on framework classes manipulate mostly-

concrete heaps of type H̃f .6 H̃f is equipped with join, ordering, and widening operators. The mostly-
concrete interpreter does not use its own abstraction for Ha , using instead the one provided by the
abstract interpreter (see below). Similarly, in the abstract interpreter, object operations on application
classes operate on an abstract representation ofHa , i.e., the application heap component.7 Concerto
does not make any assumptions on the internal heap representation used by the abstract inter-
pretation. However, the abstract interpretation must provide two functions: projectH : Ŝ → Ĥa

and injectH : Ĥa → Ŝ → Ŝ such that ∀̂s .̂s ⊑Ŝ injectH (projectH ŝ) ŝ for some type Ĥa defined
by the analysis. The AI must provide widening, join, and ordering operations for Ĥa .

To tie these two heap representations together, we extend the mostly-concrete state representa-
tion to include mostly-concrete and abstract heaps: S̃ = (Xf → ℘(Vf)

⊤) × (Xa → Â) × H̃f × Ĥa .Vf
is the domain of mostly-concrete heap locations, and Â is an abstract representation of objects of
type A. During execution, the mostly-concrete interpreter updates the mostly-concrete heap and
threads the abstract heap representation through unchanged. Concerto requires that the abstract
interpreter also threads the mostly-concrete heap through its interpretation. To ensure the concrete
heap is correctly handled, the abstract interpretation must operate over an instrumented state
representation, Ŝ ×Hf . We provide APIs for the AI to manipulate this instrumented representation.
The approach described so far does not allow for framework objects to store references to ap-

plication objects and vice versa. To relax this restriction, we require the abstract interpretation
meets some additional conditions. First, the abstract heap must represent fields and variables with
type F with the domain ℘(Vf)⊤. Next, when performing a write of v ′ : ℘(Vf)⊤ to a field/variable
of type F with the existing value v : ℘(Vf)⊤, the value v ′′ of the field/variable after the write must
satisfy the constraint v ′′ ⊑ v ′ ⊔v , i.e., the new value is bounded above by the result from a weak
update. This requirement ensures that the abstract interpretation never produces mostly-concrete

6We do not use a fully concrete heap to handle object allocations in unbounded loops. Our widening operator detects such
cases and introduces mostly-concrete summary objects where appropriate.
7Technically, the abstract interpretation may also operate on an abstraction of Hf . However, all object operations that
mutate Hf are modeled by the mostly-concrete interpreter, so in practice the abstract interpreter only uses an abstraction
of Ha .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:22 John Toman and Dan Grossman

object locations “out of thin air” that may not have yet been allocated in the mostly-concrete heap
component. A similar concern exists when storing values of type A into the concrete heap: any
abstractions stored into the concrete heap must remain valid, and updates via aliasing should be
propagated to these values. A sufficient condition is for the abstract interpreter to internally use
an abstract heap L̂oc ⇀ Ô where L̂oc is a finite domain of abstract locations and Ô are abstract
objects, and to take Â = ℘(L̂oc) and Ĥa = L̂oc ⇀ Ô.

8.2 Methods and Domain Transformers

We require that methods in application classes contain only application code, and similarly for
framework classes. As described in Section 5.2, this (non-)restriction ensures that values change
representation only at method boundaries.
For framework-to-application calls, the abstract interpreter must expose a method interpret

that analyzes a methodm in context C (see below), with mostly-concrete arguments a1,a2, . . . ,an ,
and abstract receiver r̂ . When Concerto encounters a method call in the mostly-concrete inter-
preter with a base pointer r̂ of type Â (i.e., static type A), it yields into the abstract interpreter by
passing the mostly-concrete arguments, abstract receiver, and a computed context C to interpret.
interpret is responsible for constructing an initial abstract state for m and then performing
abstract interpretation over the method body. When analysis ofm is complete, interpret returns
a mostly-concrete representation of the return value. This process mirrors the one described in
Section 5.2. However, Concerto additionally instruments the above process to inject the caller’s
mostly-concrete and abstract heaps into the callee abstract state, and similarly extract the abstract
and mostly-concrete heaps from the abstract exit state.

Concerto also provides an API for the AI to yield into the mostly-concrete interpreter when it
encounters a call back into the framework. The AI calls this API method with a mostly-concrete
receiver and arguments as well as the abstract caller state. The mostly-concrete interpreter extracts
the two heaps from this caller state, binds the argument and receiver values, and begins executing
the called method. When execution of the method completes, Concerto injects the resulting
mostly-concrete and abstract heaps into the provided abstract caller state, and returns this updated
state and a mostly-concrete return value to the AI.

8.3 Context-Sensitivity and Mostly-Concrete Interpretation

Concerto supports context-sensitive analyses. Our implementation is polymorphic over the type of
contexts, leaving the representation entirely to the client abstract interpretation. When computing
the context for an application method call, Concerto passes information about the current state,
call site, and call stack to a mkContext method exposed by the AI. mkContext is responsible for
computing the analysis context C for the method call and returning it to Concerto, which passes
the computed context to the interpret function as described above.
At application-to-framework calls, Concerto spawns a fresh mostly-concrete interpreter and

runs it until the called method returns. Where possible, this interpreter unrolls all statically bounded
loops and unfolds the call-graph (effectively giving unlimited context-sensitivity and some path-
sensitivity). However, due to nondeterministic program inputs or imprecision in the abstract
interpreter, mostly-concrete interpretation may encounter nondeterministic conditionals, loops,
and unbounded recursive cycles.

To handle nondeterministic choice,Concerto could fork two interpreters and continue execution
down each path in parallel as in Klee [Cadar et al. 2008] or Java PathFinder [Brat et al. 2000]. While
sound, this approach would encounter the exponential explosion of paths common in symbolic
execution. Instead, Concerto forks two interpreters at nondeterministic branches and executes

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:23

both branches in parallel up to the conditional control-flow join point. At the control-flow join point,
the two interpreter’s states are joined and execution continues along a single thread of execution.
To ensure termination in the presence of nondeterministic loops or unbounded recursion, the

mostly-concrete interpreter is instrumented to detect potentially infinite loop unrolling or call-graph
unfolding and then falls back on over-approximation using widening.

8.4 Allowing State Separation Violations

The state separation hypothesis applies to the language presented thus far; the choice of whether
a variable is modeled by an abstract value or mostly-concrete value could be made based on types,
and operations on abstract values can only occur in the abstract interpreter and similarly for
mostly-concrete values. However, the state separation hypothesis is violated if we add primitive
types, interfaces, and common library types such as Hashtable to our supported subset of Java; e.g.,
frameworks may interrogate or modify an integer produced by application code. Although we
could restrict the use of primitives and libraries to only application or framework code, and further
require that all implementers of an interface must be either application or framework classes, such
a restriction would be unrealistic. We therefore describe how to handle these features as well as
direct mutation of application objects by the framework and vice versa.

8.4.1 Primitive Types and Operations. Our limited subset of Java supports only integers with
basic arithmetic operations and comparisons. Integer values are represented in the mostly-concrete
interpreter with a sum type: ℘(N)⊤+Â.When an integer abstraction of type Âflows into a framework
method we automatically lift it into the sum type. We use Â as the abstract representation of objects
and integers: in practice we expect that internally Â is a union of objects and integers abstractions.

When executing an arithmetic or comparison operation, Concerto checks if both operands are of
type ℘(N)⊤. If so, then the interpreter executes the concrete arithmetic operation lifted to the ℘(N)⊤

domain. If one or both of the operands are of type Â, then Concerto uses a lift : ℘(N)⊤ → Â

method exported by the abstract interpreter to convert the powerset representation into an Â
representation. After conversion, Concerto calls methods exposed by the abstract interpretation
that perform the primitive operations on elements of Â. Finally, in cases such as array indexing,
Concerto may need to transform ℘(N)⊤ + Â into ℘(N)⊤. The abstract interpretation must also
expose a function lower : Â→ ℘(N)⊤. A sound choice for this function is to simply return ⊤F .
At calls from the framework into the application, Concerto passes the sum representation

directly to the abstract interpretation which may lift this sum type into a native representation.
In practice, abstract interpretations gain precision by using the sum representation for integers,
and lifting to a native representation on demand for arithmetic and comparison operations.

8.4.2 Interfaces and Library Types. An interface I may have implementers in the application and
the framework. Thus, given a variable/field of type I , it may be unknown whether that variable/field
contains an instance of a framework or application class. We resolve this ambiguity by requiring that
the abstract interpretation and mostly-concrete interpreter use a combined object representation
℘(Vf)×Â for values with an interface type. Intuitively, ⟨vf , â⟩ : ℘(Vf)⊤×Â represents either a frame-
work object that is abstracted byvf or an application object abstracted by â. In the case that one of the
components is the least element in its respective lattice then the interpretation of combined value is
the interpretation of the non-bottom component. In principle, we could have used this product repre-
sentation for primitive types, but found that in practice the sum type representation is easier to use.
When the mostly-concrete interpreter encounters a method call on an interface, it splits the

receiver into its two components, and then performs a concrete method call on the concrete
component while simultaneously performing the abstract method call by yielding into the abstract

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:24 John Toman and Dan Grossman

interpreter. The results from bothmethod calls are thenmerged using the appropriate join operations
and execution continues. Concerto exports an API that performs the symmetric operation for
interface calls encountered in application code by the abstract interpreter.

Both framework and application code may use the same standard libraries, breaking our simpli-
fying assumption that the types used in the application and framework are disjoint. For example,
Java types like ArrayList, HashMap, etc. are ubiquitous. Concerto supports these library types using
the same product representation used for interfaces. Unlike interfaces, the choice of whether to
model library objects using a mostly-concrete or abstract representation is not based on static type
information, but on the allocation site. For example, an ArrayList allocated in the application will
be modeled using abstract values, whereas an ArrayList allocated in the framework will be modeled
mostly-concretely. This approach is possible because we assume that library types, like interfaces,
only export object-oriented interfaces and Concerto does not need to support framework code
that directly modifies the internal state of a library objects allocated in the application and vice
versa.

8.4.3 Direct Field Access. We have so far assumed that the framework never directly accesses or
mutates application object fields and vice-versa. As argued in Section 2, we expect this assumption
holds for the vast majority framework-based applications. However, our approach can still be
applied in the cases where the assumption does not hold, albeit with some precision penalty.
We describe how to support framework code that reads and writes application object fields; the
approach for the application code directly accessing framework fields is symmetric.
We first consider the case where framework code reads an application object field. Recall that

we model operations on application fields as aops and that we use an extremely coarse model for
aops in our mostly-concrete semantics. Thus, we can soundly model reads of application object
fields as simply returning the maximal element from the appropriate lattice. For example, the
mostly-concrete interpreter may use ⊤Â to model the value read from a field of application type.
Any future operations on this read value will necessarily be imprecise; the exact extent of this
imprecision will depend on how the read value is used by the program.

Our approach for handling direct mutations of application fields is broadly similar. As field writes
are modeled as aops that side effect the abstract heap, mutations are coarsely modeled by simply
havocing the abstract heap, i.e. the interpretation of a fieldwrite returns⊤Ĥa

, where Ĥa is the domain
of abstract heaps. This coarse approachwill cause greater imprecision compared to the field read case
above, but we contend that direct field mutations are exceedingly rare in practice. As frameworks
and applications are developed independently from one another, the framework implementation
cannot guarantee any application-specific object invariants are preserved by a field mutation. A
similar argument applies for direct mutations of framework field by the application code. Thus, we
expect any imprecision introduced by this coarse modeling to be limited for real-world applications.

9 EVALUATION

To evaluate the feasibility and benefits of our combined analysis approach, we implemented a
small “web application framework” called Yawn (Your Analysis’ Worst Nightmare) in the subset
of Java supported by our prototype implementation. Yawn implements an accept loop which
parses requests received on our language’s nondeterministic IO stream and routes these requests
to application defined handlers. Yawn contains several difficult-to-analyze features found in real-
world frameworks, including dependency injection, an embedded Lisp interpreter, and indirect
flow. The dependency injection component and the Lisp interpreter heavily used reflection, and
the run-time behavior of all three features is determined by the contents of a configuration file.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:25

Table 1. Summary of abstract interpretations. CS is the context-sensitivity of the analysis if applicable. PS

indicates if the analysis is path-sensitive.

Name CS? Heap Domain Relational? PS?

Pta No Type-based Reaching Types No No
IFlow Caller Method Type-based Access Paths/Reaching Types No No
Abc Call site 1-CFA Abstract Location Pentagons/Abstract Locations Yes Yes

Table 2. Number of reports issued and execution times of the interpreters with (Conc.) and without (Std.

AI) Concerto. t/o indicates a timeout. For a discussion of the Pta results, see the main text.

Analysis Time (Conc.) Time (Std. AI) Reports (Conc.) Reports (Std. AI)

Pta 4.7 s 1282.7 s — —
Abc 8.8 s t/o 0 2
IFlow 4.6 s t/o 3 7

We implemented a simple application using the Yawn framework. The application’s primary func-
tionality is implemented as a collection of request handlers which perform simple mathematical op-
erations (e.g., summing two integers) on request parameters. The application uses in-memory state
and a simulated database layer implemented as standalone modules. These handlers and modules
are constructed and wired together using Yawn’s dependency injection mechanism. Yawn also in-
cludes a filtering mechanism to preprocess requests. Our application applies a filter that uses Yawn’s
embedded Lisp interpreter to run a filtering program specified in the application’s configuration file.
Next, we implemented three abstract interpreters that use different abstract domains, heap

representations, and context sensitivity. These analyses are summarized in Table 1. Pta performs
VTA-style [Sundaresan et al. 2000] call-graph construction using a type-based heap where abstract
addresses are sets of type names. IFlow is an information flow integrity analysis [Denning 1976]
to find flows from untrusted sources to sensitive sinks. It uses the caller method as the context
when analyzing a callee. For the heap abstraction, IFlow reuses the type-based heap from the Pta
interpreter, and extends the reaching type domain with k-limited access paths [Deutsch 1994; Jones
and Muchnick 1979] that track which heap locations are tainted. Finally, the most complex (and
expensive) analysis is Abc, an array bounds checker. Abc uses call site 1-CFA for contexts, and
uses an abstract heap that maps abstract locations to abstract objects. An abstract location is pair
consisting of an allocation site and the context in which the allocation occurred. Object values are
abstract by powersets of abstract locations. Integers are abstracted with an approximation of the
reduced product [Cousot and Cousot 1979b] of the Interval domain Intv and inequalities between
access paths, giving a weakly relational Pentagon domain [Logozzo and Fähndrich 2008]. As the
choice of Â must be non-relational, the abstract representation of integers in Â is simply Intv. Abc
also propagates inequalities induced by comparison operators making it partially path sensitive.

Finally, we ran each interpreter over the application twice: once using Concerto and once with
standard abstract interpretation. Each run had a one hour time budget, and we measured the total
time of each run. After each run, we collected call-graph information (Pta) or any alarms reported
(Abc & IFlow). In the event of a timeout, we collected any information computed up to that point.

For every analysis, Concerto vastly outperformed plain abstract interpretation as shown in Ta-
ble 2. Under plain abstract interpretation, Abc and IFlow timed out while Pta took approximately
275× longer than combined interpretation. The Abc and IFlow timeouts were caused by enormous
strongly connected components due to sound but imprecise modeling of Yawn’s use of reflection
and indirection. Even with widening, propagating information through these cycles overwhelmed

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:26 John Toman and Dan Grossman

the abstract interpreters. Pta also encountered large strongly connected components, but the lack
of context-sensitivity and simplicity of the abstract domains mitigated the performance impacts.

Further, the quality of analysis results was significantly worse with plain interpretation compared
to Concerto. To evaluate the precision of Abc and IFlow, we classified the alarms reported as
either true or false positives. Combined interpretation correctly found all 3 information leaks in
our test application and also successfully verified that the application was free of out-of-bounds
array accesses. In contrast, plain abstract interpretation reported 7 leaks and and 2 out-of-bounds
accesses, respectively. For the array bounds checker, all these reports were false positives, and all
but 3 were false positives for the information flow analysis. Additionally, as these results were
collected after timeouts, they represent a lower bound on the imprecision of Abc and IFlow.
Pta does not find bugs, but produces a call-graph for a downstream analysis; we include it in

our experiments to demonstrate the impact of combined interpretation on resolving reflective
invocations in framework code. As a representative example, under plain interpretation Pta resolved
the reflective allocations in the dependency injection facility to 38 possible types, compared to just
15 types under combined interpretation. Similarly, within the Lisp interpreter, plain interpretation
resolved the reflective invocations to as many as 30 and no fewer than 8 callees, whereas combined
interpretation resolved every invocation to a single callee.

10 RELATEDWORK

There has been considerable work on improving analysis precision for framework-based applica-
tions by using the information in configuration files, particularly for Android applications [Arzt
et al. 2014; Blackshear et al. 2015]. The Frameworks for Frameworks system by Sridharan et al.
[2011] generalizes these efforts, providing a framework for writing framework models. Unfortu-
nately, manually providing a framework model is an enormous effort that is rarely reusable across
different frameworks. In contrast, once the concrete semantics for a language are specified, com-
bined interpretation can in principle be used with any framework without further effort.
Several static analyses have resolved calls that use reflection [Barros et al. 2015; Li et al. 2015;

Smaragdakis et al. 2015]. To succeed, these techniques rely on programs using reflection APIs
with constant strings and type-casting the results in stylized ways. These patterns rarely occur
in framework implementations. In addition, these techniques are tailored to specific APIs (i.e.,
Java’s reflection API) and adapting them to other domains requires non-trivial work by the analysis
designer. Moreover, frameworks are difficult to analyze for reasons beyond their use of reflection.
Many efforts have combined dynamic and static analysis, yielding “blended” or “hybrid” anal-

yses. Some hybrid analyses use information recorded during dynamic executions of the program to
improve the static-analysis precision [Csallner et al. 2008; Dufour et al. 2007; Grech et al. 2017; Ren
and Foster 2016; Wei and Ryder 2013]. For example, TamiFlex by Bodden et al. [2011] instruments
an application as it runs a representative workload to record the callees of reflective calls. These
approaches generally suffer from unsoundness; even representative workloads rarely exercise all
possible execution paths. Symmetrically, other researchers have run a dynamic analysis seeded
with information produced by a static analysis [Balzarotti et al. 2008; Chugh et al. 2009; Lam et al.
2008]. As with the above approaches, any dynamic analysis will almost certainly be unsound.

Other researchers have explored other approaches to combining analyses. For example, [Fink et al.
2008] runs a series of increasingly precise analyses to prune false positives left by earlier analyses.
Work on tunable analyses of JavaScript [Ko et al. 2015] uses the results of a pre-analysis to restrict the
abstract states explored by an abstract interpretation. [Ferrara 2014] explores combining a value and
heap analysis to improve precision in abstract interpretation. Their approach embeds information
produced by the heap analysis into the domain of the value analysis. This embedding closely
mirrors how Concerto embeds abstract values into the mostly-concrete state and vice versa. Other

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:27

researchers have combined different execution strategies for different portions of code [Avgerinos
et al. 2014; Chipounov et al. 2011]. For example, [Chipounov et al. 2011] switch to fully concrete
execution on portions of the system under test. Their approach requires concretizing symbolic values
and then checking that doing so does not prune any feasible paths. Concretization is performed lazily,
which parallels how Concerto threads abstract values through mostly-concrete interpretation.
However, due to the state separation hypothesis, Concerto can avoid all concretization.

Our combined interpretation bears similarity to concolic testing [Godefroid et al. 2005; Sen and
Agha 2006; Sen et al. 2005]. Concolic testing performs symbolic and concrete execution in parallel,
but falls back on concrete values in the symbolic interpreter when it encounters an expression
outside of the logic of the underlying theorem prover. This approach is similar to how Concerto
uses concrete execution to precisely reason about difficult-to-analyze code. Similarly, as noted in
Section 2, our technique is similar to partial evaluation [Futamura 1999; Mogensen 1995]. However,
partial evaluation is typically used for optimization [Brown and Palsberg 2017; Jones et al. 1993],
and the full resolution of reflection is usually an orthogonal concern. We are unaware of work
trying to use partial evaluation to handle difficult-to-analyze framework code for sound program
analysis, and we believe Concerto is less brittle than a partial evaluation approach to this problem.
Finally, many researchers have improved analysis precision by combining abstract domains

[Brauer et al. 2010; Cousot et al. 2006; Fähndrich and Logozzo 2010; Ferrara 2010; Laviron and
Logozzo 2009; Logozzo and Fähndrich 2008; Toubhans et al. 2013; Zanioli et al. 2012], via the
reduced product [Cousot and Cousot 1979b], reduced tensor product [Nielson 1985], etc. Astree
[Cousot et al. 2005] in particular is an industry tool that computes an approximate reduced product
by propagating information through a tree of abstract domains [Cousot et al. 2006]. Our approach
could be formalized as a degenerate case of this framework, where the exchange of information
between the abstract and mostly-concrete interpreters takes place at the transition points via the
communication channels described in [Cousot et al. 2006]. However, while the reduced product
domain found in Astree and other abstract interpretations typically exchange information about
the same program point between multiple domains, under Concerto each program statement is
analyzed by either mostly-concrete or abstract interpretation. Further, our subfixpoint iteration
strategy is significantly different from the one described in [Cousot et al. 2006].

11 CONCLUSIONS AND FUTUREWORK

We presented Concerto, a framework for soundly combining concrete and abstract interpretation.
Concerto targets framework-based applications that use difficult-to-analyze reflection, metapro-
gramming, and abstractions. This combination is possible because framework-based applications
in practice satisfy a state separation hypothesis which Concerto exploits to opaquely embed ab-
stract values into a mostly-concrete interpreter. Our combination supports any abstract interpreter
that satisfies a modest set of conditions, and yields significant improvements in initial experiments
with a research prototype. Further generalizing our framework, in particular supporting alterna-
tive definitions of soundness (e.g., via concretization function [Cousot and Cousot 1992b]) is one
area of future work. We also plan to extend our initial research prototype to support the full Java
language and real-world frameworks.

ACKNOWLEDGMENTS

We thank James Wilcox, Ben Hardekopf, Bill Harris, James Bornholt, and Jared Roesch for their
comments on early drafts of this work. Thanks also to Pavel Panchekha for his insight on our
proofs. Finally, we thank the anonymous reviewers, in particular our shepherd, for their comments
and feedback on this work. This material is based upon work supported in part by DARPA under
agreement number FA8750-16-2-0032.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:28 John Toman and Dan Grossman

REFERENCES

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In PLDI.

Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. 2014. Enhancing symbolic execution with
veritesting. In ICSE.

Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, Engin Kirda, Christopher Kruegel, and Giovanni Vigna.
2008. Saner: Composing static and dynamic analysis to validate sanitization in web applications. In Symposium on
Security and Privacy.

Paulo Barros, René Just, Suzanne Millstein, Paul Vines, Werner Dietl, Michael D Ernst, et al. 2015. Static analysis of implicit
control flow: Resolving Java reflection and Android intents. In ASE.

Sam Blackshear, Alexandra Gendreau, and Bor-Yuh Evan Chang. 2015. Droidel: A general approach to android framework
modeling. In SOAP.

Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011. Taming reflection: Aiding static analysis in
the presence of reflection and custom class loaders. In ICSE.

François Bourdoncle. 1993. Efficient chaotic iteration strategies with widenings. In Formal Methods in Programming and
their Applications.

Guillaume Brat, Klaus Havelund, SeungJoon Park, and Willem Visser. 2000. Java PathFinder-second generation of a Java
model checker. InWorkshop on Advances in Verification.

Jörg Brauer, Thomas Noll, and Bastian Schlich. 2010. Interval analysis of microcontroller code using abstract interpretation
of hardware and software. InWorkshop on Software & Compilers for Embedded Systems.

Matt Brown and Jens Palsberg. 2017. Jones-optimal partial evaluation by specialization-safe normalization. Proc. ACM
Program. Lang. 2, POPL (2017), 14.

Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs. In OSDI.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A Platform for In-vivo Multi-path Analysis of
Software Systems. In ASPLOS.

Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. 2009. Staged Information Flow for Javascript. In PLDI.
Patrick Cousot. 1977. Asynchronous iterative methods for solving a fixed point system of monotone equations in a complete

lattice. Res. rep. RR 88 (1977).
Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In POPL.
Patrick Cousot and Radhia Cousot. 1979a. Constructive versions of Tarski’s fixed point theorems. Pacific journal of

Mathematics 82, 1 (1979).
Patrick Cousot and Radhia Cousot. 1979b. Systematic design of program analysis frameworks. In POPL. ACM.
Patrick Cousot and Radhia Cousot. 1992a. Abstract interpretation and application to logic programs. The Journal of Logic

Programming 13, 2-3 (1992), 103–179.
Patrick Cousot and Radhia Cousot. 1992b. Abstract interpretation frameworks. Journal of logic and computation 2, 4 (1992).
Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. 2005.

The ASTRÉE analyzer. In ESOP.
Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. 2006.

Combination of abstractions in the ASTRÉE static analyzer. In Annual Asian Computing Science Conference.
Christoph Csallner, Yannis Smaragdakis, and Tao Xie. 2008. DSD-Crasher: A hybrid analysis tool for bug finding. TOSEM

17, 2 (2008), 8.
Dorothy E Denning. 1976. A lattice model of secure information flow. Commun. ACM 19, 5 (1976).
Alain Deutsch. 1994. Interprocedural May-alias Analysis for Pointers: Beyond K-limiting. In PLDI.
Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. 2007. Blended analysis for performance understanding of framework-

based applications. In ISSTA.
Manuel Fähndrich and Francesco Logozzo. 2010. Static contract checking with abstract interpretation. In Formal Verification

of Object-Oriented Software.
Pietro Ferrara. 2010. Static type analysis of pattern matching by abstract interpretation. In Formal Techniques for Distributed

Systems. Springer, 186–200.
Pietro Ferrara. 2014. Generic combination of heap and value analyses in abstract interpretation. In VMCAI.
Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. 2008. Effective typestate verification in the

presence of aliasing. TOSEM 17, 2 (2008).
Martin Fowler. 2004. Inversion of control containers and the dependency injection pattern. (2004).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:29

Yoshihiko Futamura. 1999. Partial evaluation of computation process–an approach to a compiler-compiler. Higher-Order
and Symbolic Computation 12, 4 (1999), 381–391.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Automated Random Testing. In PLDI.
Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis. 2017. Heaps Don’t Lie: Countering

Unsoundness with Heap Snapshots. Proc. ACM Program. Lang. 1, OOPSLA, Article 68 (2017).
Neil D Jones, Carsten K Gomard, and Peter Sestoft. 1993. Partial evaluation and automatic program generation. Peter Sestoft.
Neil D Jones and Steven S Muchnick. 1979. Flow analysis and optimization of LISP-like structures. In POPL.
John B Kam and Jeffrey D Ullman. 1977. Monotone data flow analysis frameworks. Acta Informatica 7, 3 (1977), 305–317.
Yoonseok Ko, Hongki Lee, Julian Dolby, and Sukyoung Ryu. 2015. Practically Tunable Static Analysis Framework for Large-

Scale JavaScript Applications. In ASE.
Monica S. Lam, Michael Martin, Benjamin Livshits, and John Whaley. 2008. Securing web applications with static and

dynamic information flow tracking. In Partial Evaluation and Semantics-based Program Manipulation.
Vincent Laviron and Francesco Logozzo. 2009. Subpolyhedra: A (more) scalable approach to infer linear inequalities. In

VMCAI.
Yue Li, Tian Tan, and Jingling Xue. 2015. Effective soundness-guided reflection analysis. In SAS.
Francesco Logozzo and Manuel Fähndrich. 2008. Pentagons: a weakly relational abstract domain for the efficient validation

of array accesses. In Symposium on Applied Computing.
Torben Mogensen. 1995. Self-applicable online partial evaluation of the pure lambda calculus. In Symposium on Partial

Evaluation and Semantics-based Program Manipulation.
Flemming Nielson. 1985. Tensor products generalize the relational data flow analysis method. In 4th Hungarian Computer

Science Conference. 211–225.
Brianna M. Ren and Jeffrey S. Foster. 2016. Just-in-time Static Type Checking for Dynamic Languages. In PLDI.
Koushik Sen and Gul Agha. 2006. CUTE and jCUTE: Concolic unit testing and explicit path model-checking tools. In CAV.
Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing Engine for C. In ESEC/FSE.
Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Bravenboer. 2015. More sound static handling of

Java reflection. In ASPLAS.
Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer Tripp, and Ryan Berg. 2011. F4F: Taint Analysis of

Framework-based Web Applications. In OOPSLA.
Gregory T Sullivan. 2001. Dynamic partial evaluation. In Programs as Data Objects. 238–256.
Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai, Patrick Lam, Etienne Gagnon, and Charles

Godin. 2000. Practical Virtual Method Call Resolution for Java. In OOPSLA.
Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific journal of Mathematics 5, 2 (1955).
Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival. 2013. Reduced product combination of abstract domains for

shapes. In VMCAI.
Shiyi Wei and Barbara G Ryder. 2013. Practical blended taint analysis for JavaScript. In ISSTA.
Matteo Zanioli, Pietro Ferrara, and Agostino Cortesi. 2012. SAILS: Static Analysis of Information Leakage with Sample. In

Symposium on Applied Computing.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:30 John Toman and Dan Grossman

A PROOFS FOR SECTION 4

A.1 Soundness of I⊤

We now prove that αF ◦ F ⊑ I⊤ ◦ αF . We first note the following fact about αF that we will exploit
during our proofs:

∀ℓ⃗, ℓ⃗′, r , r ′,x ,y.V (r [ℓ⃗],x) ⊆ V (r ′[ℓ⃗],y) ⇒ αF (r)[ℓ⃗][x] ⊑ αF (r
′)[ℓ⃗′][y] (20)

αv (∅) = ⊥Â (21)
To begin, we will ignore the “initial state” term from the definition of F , and first prove I⊤ sound

with respect to:

F0 (r)[ℓ⃗] =

⋃
p∈pred (ℓ)

in∈r [p•{ℓ◦]
stepF (in, ℓ) ℓ⃗ = s◦ { s•

F (r)[ℓ⃗] o.w .

which is the original concrete semantic function without the intialization term. We first prove that
the inequality holds for some arbitrary r and ℓ◦ { ℓ•. We first need the following lemmas.

Lemma 1. ∀ℓ⃗, r , s̃ .αF ([ℓ⃗ 7→ F L])[ℓ⃗] ⊑ s̃ ⇒ αF ◦ F0 (r)[ℓ⃗] ⊑ s̃ where F L = F0 (r)[ℓ⃗] and
[ℓ⃗ 7→ s] : R is shorthand for ⊥R[ℓ⃗ 7→ s].

Proof. For everyx ,V (F0 (r)[ℓ⃗],x) = V ([ℓ⃗ 7→ F L][ℓ⃗],x), and thus by (20),αF ([ℓ⃗ 7→ F L])[ℓ⃗][x] =
αF (F0 (r))[ℓ⃗][x]. By transitivity, we have αF ◦ F0 (r)[ℓ⃗] ⊑ s̃ . □

Intuitively, Lemma 1 ensures that to establish pointwise inequality, it suffices to consider the
abstracted state for each ℓ⃗ individually.

Lemma 2.
∀r , ℓ,p ∈ pred (ℓ), s̃ .(

∀⟨in,E⟩ ∈ r [p• { ℓ◦].αF ([ℓ 7→ stepF (⟨in,E⟩, ℓ)])[ℓ] ⊑ s̃
)

⇒ αF ([ℓ 7→ F L])[ℓ] ⊑ s̃

where F L is defined as in Lemma 1.

Proof. First, we show that ⊥R̃[ℓ 7→ s̃] is an upper bound for the set {αF (m) | m ∈ M}, where
M = {[ℓ 7→ stepF (⟨in,E⟩, ℓ)] | p ∈ pred (ℓ) ∧ ⟨in,E⟩ ∈ r [p• { ℓ◦]}. Letm be some element ofM.
By assumption, αF (m)[ℓ] ⊑ s̃ , so it remains to show that ∀ℓ′.αF (m)[ℓ′] ⊑ ⊥R̃[ℓ 7→ s̃][ℓ′] = ⊥S̃ . This
follows from the fact that for any x , αF (⊥R)[ℓ′][x] = ⊥Ṽ (where ⊥Ṽ is ⊥Â or ∅, depending on the
type of x) and by (20) andV (⊥R[ℓ′],x) = ∅ = V (m[ℓ′],x), whence we have that αF (m)[ℓ′][x] =
⊥Ṽ .
Next, observe that [ℓ 7→ F L] = [ℓ 7→

⋃
p∈pred (ℓ)

⟨in,E⟩∈r [p•{ℓ◦]
stepF (⟨in,E⟩, ℓ)] which is equivalent

to
⊔

p∈pred (ℓ)
⟨in,E⟩∈r [p•{ℓ◦]

[ℓ 7→ stepF (⟨in,E⟩, ℓ)], i.e.,
⊔
M. As αF preserves least upper bounds, and

from the fact that ⊥R̃[ℓ 7→ s̃] is an upper bound of the set {αF (m) | m ∈ M}, we have that:
αF (
⊔

p∈pred (ℓ)
⟨in,E⟩∈r [p•{ℓ◦]

[ℓ 7→ stepF (⟨in,E⟩, ℓ)]) ⊑ ⊥R̃[ℓ 7→ s̃], from which it is immediate that αF ([ℓ 7→

F L])[ℓ] ⊑ s̃ . □

Lemma 2 implies that to show an abstract state s̃ over-approximates the result of stepping all
incoming concrete states, it suffices to show that s̃ over-approximates stepping each individual
incoming state. We now show that for any ℓ and r , I⊤ (αF (r))[ℓ◦ { ℓ•] is such an s̃ .

Lemma 3. ∀r , ℓ, in,p ∈ pred (ℓ).⟨in,E⟩ ∈ r [p• { ℓ◦] :

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:31

(1)
∀x ,y.V (stepF (⟨in,E⟩, ℓ),x) ⊆ V ({⟨in,E⟩},y)

⇒ αF ([ℓ 7→ stepF (⟨in,E⟩, ℓ)])[ℓ][x] ⊑
(⊔
p′∈pred (ℓ)

αF (r)[p ′• { ℓ◦]
)
[y]

(2) αF ([ℓ 7→ stepF (⟨in,E⟩, ℓ)])[ℓ] ⊑ I⊤ (αF (r))[ℓ]

Proof.
(1) ⟨in,E⟩ ∈ r [p• { ℓ◦] implies thatV ({⟨in,E⟩},y) ⊆ V (r [p• { ℓ◦],y), whence by transitivity

and (20) we then have:
αF ([ℓ 7→ stepF (⟨in,E⟩, ℓ)])[ℓ][x] ⊑ αF (r)[p• { ℓ◦][y]

Transivity and least upper bounds gives
αF ([ℓ 7→ stepF (⟨in,E⟩, ℓ)])[ℓ][x] ⊑ αF (r)[p• { ℓ◦][y] ⊑

⊔
p′∈pred (ℓ)

αF (r)[p ′• { ℓ◦][y]

(2) By the pointwise definition of the domains, it suffices to show that:
∀x .αF ([ℓ 7→ stepF (⟨in,E⟩, ℓ)])[ℓ][x] ⊑ step⊤ (ĩn, ℓ)[x]

⊑ I⊤ (αF (r))[ℓ][x]
where ĩn =

⊔
p′∈pred (ℓ) αF (r)[p ′• { ℓ◦]. As an immediate consequence of part 1 above, we

can conclude that if all states produced by stepF retain the original value of x , and that step⊤
likewise does not change the value of x from ĩn, the inequality holds at x .
We proceed by the branches of step⊤:
Case (5): step⊤ simply returns ĩn, and stepF (⟨in,E⟩, ℓ) must return {⟨in,E⟩} and by the above

argument, the inequality holds for all x .
Case (6): We must only establish the inequality for the left-hand side of the assignment. As
V (stepF (⟨in,E⟩, ℓ), lhs) = V ({⟨in,E⟩}, rhs), we have by part (1) above:

αF ([ℓ 7→ stepF (⟨in,E⟩, ℓ)])[ℓ][lhs] ⊑ ĩn[rhs] = step⊤ (ĩn, ℓ)[lhs]
Case (7): As above, we need only establish that the relationship holds for the lhs. By defi-

nition of stepF ,V (stepF (⟨in,E⟩, ℓ), lhs) = V ({⟨in[lhs 7→ Jbcf K],E⟩}, lhs) = {Jbcf K}. By the
definition of αF :

αF ([ℓ 7→ stepF (⟨in,E⟩, ℓ)])[ℓ][lhs] = {Jbcf K}

= ĩn[lhs 7→ {Jbcf K}][lhs]

= step⊤ (ĩn, ℓ)[lhs]
Case (8): Except for the lhs , every variable in each state produced by stepF retains its original

value in in, and thus we must only show that the inequality holds for lhs . Define the set
O = {r | ⟨r ,E ′⟩ ∈ JfopK(E, in[v1], . . . , in[vn]} where v1, . . . ,vn are the variable arguments
to the fop. By the definition of αF , αF ([ℓ 7→ stepF (⟨in,E⟩, ℓ)])[ℓ][lhs] = O. Consider now
the value of step⊤ (ĩn, ℓ)[lhs]. If it is ⊤F , then the result trivially again holds. Otherwise,
we can again conclude that step⊤ (ĩn, ℓ)[lhs] = IJfopK(ĩn[v1], . . . , ĩn[vn]) , ⊤F , whence
by the the definition of IJfopK, we may further conclude that ĩn[v1], . . . , ĩn[vn] , ⊤F . By
the definition of least upper bounds and from the definition of αF , we must then have:
in[v1] ∈ ĩn[v1] ∧ . . . ∧ in[vn] ∈ ĩn[vn]. As E ∈ E, from the definition of IJfopK we have
O ⊆ IJfopK(ĩn[v1], . . . , ĩn[vn]) = step⊤ (ĩn, ℓ)[lhs] as required.

Case (9): By definition ofαF ,αF ([ℓ 7→ stepF (⟨in,E⟩, ℓ)])[ℓ][lhs] = v̂ : Â ⊑ ⊤Â = step⊤ (ĩn, ℓ)[lhs].
□

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:32 John Toman and Dan Grossman

Let us now prove soundness of I⊤ w.r.t F0 for ℓ◦ { ℓ•:

Lemma 4. ∀ℓ, r .αF ◦ F0 (r)[ℓ◦ { ℓ•] ⊑ I⊤ ◦ αF (r)[ℓ◦ { ℓ•]

Proof. Immediate from Lemmas 1 and 2, and Lemma 3 part 2. □

Lemma 5. ∀p• { ℓ◦, r .αF ◦ F0 (r)[p• { ℓ◦] ⊑ I⊤ ◦ αF (r)[p• { ℓ◦]

Proof. As αF (⊥R) = ⊥R̃ , if F0 (r)[p
• { ℓ◦] = ∅ the inequality trivially holds. Otherwise, by

definition, F0 (r)[p• { ℓ◦] ⊆ r [p], and thus αF (F0 (r))[p• { ℓ◦] ⊑ αF (r)[p] (where p is shorthand
for p◦ { p•). If F̃ T (αF (r),p

• { ℓ◦) is true, then I⊤ (αF (r))[p• { ℓ◦] = αF (r)[p] as required. It
therefore suffices to show that F0 (r)[p• { ℓ◦] , ∅ ⇒ F̃ T (αF (r),p

• { ℓ◦). We proceed by cases
on the form of proд[p]. If p ∈ ℓf and proд[p] is conditional over x and y with target ℓ, then there
exists some state s ∈ r [p] such that s[x]J<=>Ks[y]. If either αF (r)[p][x] = ⊤F or αF (r)[p][y] = ⊤F ,
then by definition αF (r)[p][x]IJ<=>KαF (r)[p][y] is trivially true. Otherwise, by the definition of
αF , s[x] ∈ αF (r)[p][x] and similarly for s[y] and αF (r)[p][y], thus αF (r)[p][x]IJ<=>KαF (r)[p][y]⇒
F̃ T (αF (r),p

• { ℓ◦). A similar argument holds for when p ∈ ℓf , and proд[p] is a condition with
fallthrough target ℓ. Finally, for any other statement, F̃ T is trivially true. □

We can now prove our main result:

Proof of Theorem 2. For ℓ⃗ , s◦ { s•, αF ◦ F0 is equivalent to αF ◦ F , whence the result holds
from Lemmas 4 and 5. It remains to show that the proof holds at ℓ⃗ = s◦ { s• (which we will
abbreviate in the following as s).
We must show that, for some arbitrary r , αF (F (r))[s] ⊑ I⊤ (αF (r))[s]. By reasoning similar to

Lemma 1, it suffices to show:
αF ([s 7→

⋃
p∈pred (ℓ)

in∈r [p•{ℓ◦]

stepF (in, ℓ)] ⊔ [s 7→
⋃
e ∈ιE

stepF (⟨ιS , e⟩, ℓ)]) ⊑ I⊤ (αF (r))

As αF is a complete join morphism, this is equivalent to showing that:
αF ([s 7→ F0 (r)[ℓ⃗]]) ⊔ αF ([s 7→

⋃
e ∈ιE

stepF (⟨ιS , e⟩, ℓ)]) ⊑ I⊤ (αF (r))

By Lemmas 2 and 3, we have the necessary bound for the first term of the join. It therefore remains
to show that:

αF ([s 7→
⋃
e ∈ιE

stepF (⟨ιS , e⟩, ℓ)]) ⊑ I⊤ (αF (r))

for which it suffices to to show that:
αF ([s 7→

⋃
e ∈ιE

stepF (⟨ιS , e⟩, ℓ)])[s] ⊑ step⊤ (⊥S̃ , ℓ) ⊑ I⊤ (αF (r))[s]

This result holds as a special case of the reasoning from the proof of Lemma 3 part 2.
We conclude by noting that we were careful to show that soundness of I⊤ is preserved when

any IJfopK returns ⊤F or if the abstraction process returns ⊤F , which justifies the soundness of our
finitization approach. □

A.2 Soundness of Combined Interpretation

Proof of Theorem 3. We proceed by cases on the components of R, for some input argumentX .
Case ℓ⃗ ∈ LA: Wemust show thatαC◦F (X)[ℓ⃗] = αA (F (X))[ℓ⃗] ⊑ C (αC (X))[ℓ⃗] = F̂◦înj (αC (X))[ℓ⃗] =

F̂ (înj (αC (X)))[ℓ⃗]. By assumption, we have that αA (F (X))[ℓ⃗] ⊑ F̂ (αA (X))[ℓ⃗], so it suffices to

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:33

show that αA (X) ⊑ înj (αC (X)). For labels in LA, the inequality is immediate. For labels in
LF , we have αA (X)[ℓ⃗] ⊑ τ̂ (αF (X)[ℓ⃗]) = înj (αC (X))[ℓ⃗] from assumption (12).

Case ℓ⃗ ∈ LF : As above, by the soundness of I⊤, we have that αF (F (X))[ℓ⃗] ⊑ I⊤ (αF (X))[ℓ⃗], so
it suffices to show that αF (X) ⊑ ĩnj (αC (X)). As in the above case, the inequality immediately
holds at labels in LF . Otherwise we have ∀ℓ⃗′ ∈ LA.αF (X)[ℓ⃗′] ⊑ τ̃ (αA (X)) = ĩnj (αC (X))[ℓ⃗′]
by (13).

□

A.3 Increased Precision

Lemma 6. C ◦ p̂roj ⊑R̂→R p̂roj ◦ F̂

Proof. Suffices to show that, for some r̂ , and for all ℓ⃗, C ◦ p̂roj (̂r)[ℓ⃗] ⊑ p̂roj ◦ F̂ (̂r)[ℓ⃗]. Before
proceeding we observe that: ĩnj ◦ p̂roj = ˙̃τ and înj ◦ p̂roj = id .
By cases on whether ℓ⃗ ∈ LF or ℓ⃗ ∈ LA:

Case ℓ⃗ ∈ LA: ThenC ◦ p̂roj (̂r)[ℓ⃗] = F̂ ◦ înj ◦ p̂roj (̂r)[ℓ⃗]. Because înj ◦ p̂roj = id , we must show
F̂ (̂r)[ℓ⃗] ⊑ p̂roj ◦ F̂ (̂r)[ℓ⃗] = F̂ (̂r)[ℓ⃗] which holds trivially as p̂roj is the identity at LA.

Case ℓ⃗ ∈ LF : Then we must show that I⊤ ◦ ĩnj ◦ p̂roj (̂r)[ℓ⃗] = I⊤ (˙̃τ (̂r))[ℓ⃗] ⊑ p̂roj ◦ F̂ (̂r)[ℓ⃗] =
τ̃ (F̂ (̂r)[ℓ⃗]) = ˙̃τ (F̂ (̂r))[ℓ⃗]. By assumption, LB◦ ˙̃τ ⊑ ˙̃τ ◦ F̂ , so it suffices to show that I⊤◦ ˙̃τ (̂r)[ℓ⃗] ⊑
LB ◦ ˙̃τ (r)[ℓ⃗]. By cases on the form of ℓ⃗ ∈ LF :
Subcase ℓ⃗ = ℓ◦f { ℓ

•
f : From the definitions of I⊤ and LB, we must show that:

step⊤ (̃s, ℓf) ⊑ stepLB (̃s, ℓf)

where s̃ =
⊔

p∈pred (ℓf)
˙̃τ (̂r)[p• { ℓ◦f]. For branches (15) and (16) in stepLB , the corre-

sponding branch (5) and (6) in step⊤ clearly yield identical results. As branch (18) returns
s̃[x 7→ ⊤F], and the corresponding branches (7) and (8) of step⊤ produce states of the form:
s̃[x 7→ v] (where v is some member of ℘(Vf)⊤), the inequality trivially holds. Finally, we
do not have to consider branch (17) of stepLB nor branch (9) of stepF because the syntactic
constraints of the language rule such cases out for a label of the form ℓf .
Finally, if ℓ = s , we must additionally show that step⊤ (⊥S̃ , s) ⊑ stepLB (⊥S̃ , s). This follows
by the same reasoning as above.

Subcase ℓ⃗ = ℓ•f { ℓ
◦
: By definition, I⊤ (˙̃τ (̂r))[ℓ•f { ℓ

◦] either returns ˙̃τ (̂r)[ℓ◦f { ℓ
•
f] or ⊥.

As LB(˙̃τ (̂r))[ℓ•f { ℓ
◦] = ˙̃τ (̂r)[ℓ◦f { ℓ

•
f], the inequality trivially holds.

□

Lemma 7. Assume for two complete lattices T and T̂ , a complete-join morphism µ : T̂ → T , and
two functions F : T → T , F̂ : T̂ → T̂ we have that F ◦ µ ⊑T̂→T µ ◦ F̂ . Assume then we have two Ord
termed sequences defined via transfinite recursion as:

F 0 = ⊥

F δ+1 = F (F δ)
F λ =

⊔
β<λ F

β

F̂ 0 = ⊥

F̂ δ+1 = F̂ (F̂ δ)

F̂ λ =
⊔

β<λ F̂
β

Then for any δ ∈ Ord , F δ ⊑ µ (F̂ δ)

Proof. By transfinite induction.
Case δ = 0: Then F 0 = ⊥T = µ (⊥T̂) = µ (F̂ 0), where the equality between ⊥ terms comes from

the fact that µ is a complete join-morphism.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:34 John Toman and Dan Grossman

Case δ + 1: Assume F δ ⊑ µ (F̂ δ). By the monotonicity of F , we have that F δ+1 = F (F δ) ⊑

F (µ (F̂ δ)), so it suffices to show that F (µ (F̂ δ)) ⊑ µ (F̂ δ+1). Further, by definition F̂ δ+1 = F̂ (F̂ δ),
thus we must show that F ◦ µ (F̂ δ) ⊑ µ ◦ F̂ (F̂ δ), which holds by assumption.

Case δ = λ: By the inductive hypothesis, ∀β < λ.F β ⊑ µ (F̂ β), thus
F λ =

⊔
β<λ

F β ⊑
⊔
β<λ

µ (F̂ β) = µ (
⊔
β<λ

F̂ β) = µ (F̂ λ)

Where the second-to-last equality follow from µ being a complete join morphism.
□

Proof of Theorem 4. From the definition of lfpC and lfp F̂ as the limit of the ordinal termed
sequences defined as in Lemma 7, Lemma 6, that p̂roj is a complete join morphism from part 3
of assumption Eq. (19), Lemma 7 gives us that lfpC ⊑ p̂roj (lfp F̂). As înj is monotone, we have:
înj (lfpC) ⊑ înj ◦ p̂roj (lfp F̂), whence we have înj (lfpC) ⊑ lfp F̂ as înj ◦ p̂roj = id as observed in
the proof of Lemma 6. □

B PROOFS FOR SECTION 5

We note that Eq. (20) still applies under the updated definition ofV .

Updated Proof for Theorem 2. We begin by noting that for the intraprocedural fragment of
the language, the proofs of soundness given Appendix A.1 generalize naturally to the new definition
of states. As an informal argument as to why: note that the definition of V given above only
considers the values of variables in the stack frame of the currently executing method. From the
definition of αF , this in turn implies that the values in the abstracted state are exclusively determined
by the concrete values in the active state frame. Finally, as the intraprocedural fragment of the
language manipulates only the active stack frame, the arguments made in Appendix A.1 translate
naturally the extended state definition. Finally, although we have extended the intraprocedural
fragment of the language with a return statement, the semantics of this statement given by step⊤

and stepF are simply a special case of an assignment statement, and the argument given in the
proof of Lemma 3 easily applies to this statement as well.
We therefore only concern ourselves with establishing soundness with respect to the newly

defined interprocedural fragment. By Lemma 1, it suffices to establish soundness for each new type
of edge individually. Without loss of generality, we proceed to prove soundness for some arbitrary
instance of each type of edge and for some r .

Case ℓ◦c { ℓ
•
c : By reasoning similar to Appendix A.1, it suffices to show that
αF ([ℓc 7→

⊔
p∈pred (ℓc)

r [p• { ℓ◦c]])[ℓc] ⊑ I⊤ (αF (r))[ℓc]

=
⊔

p∈pred (ℓc)

αF (r)[p• { ℓ◦c]

From the definition of the domain R, we have:
αF ([ℓc 7→

⊔
p∈pred (ℓc)

r [p• { ℓ◦c]]) = αF (
⊔

p∈pred (ℓc)
in∈r [p•{ℓ◦c]

[ℓc 7→ {in}])

=
⊔

p∈pred (ℓc)
in∈r [p•{ℓ◦c]

αF ([ℓc 7→ {in}])

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:35

By the definition of least upper bounds, it suffices to show that, for some arbitrary p ′ ∈
pred (ℓc), in ∈ r [p ′• { ℓ◦c]:

αF ([ℓc 7→ {in}])[ℓc] ⊑
⊔

p∈pred (ℓc)

αF (r)[p• { ℓ◦c]

We show that αF ([ℓc 7→ {in}])[ℓc] ⊑ αF (r)[p ′• { ℓ◦c], whence by the definition of least
upper bounds and transitivity we will have the desired result.
For some arbitrary variable v , from the fact that in ∈ r [p ′• { ℓ◦c], it is immediate that:

V ([ℓc 7→ {in}][ℓc],v) = V ({in},v) ⊆ V (r [p ′• { ℓ◦c],v)
whence by Eq. (20) we have that αF ([ℓc 7→ {in}])[ℓc][v] ⊑ αF (r)[p ′• { ℓ◦c][v], as required.

Case p• { ℓ◦r : Trivial, by the definition of αF and reasoning similar to the above.
Case ℓ•c { ℓ

′◦
: We first abbreviate ℓ•c { ℓ′◦ as c⃗ and (as usual) ℓ◦c { ℓ•c as ℓc . By reasoning

similar to that in case ℓ◦c { ℓ•c , it suffices to show that:⊔
⟨s◦sr ,R,E⟩∈r [ℓc]

αF ([⃗c 7→ {⟨s ◦ sr ◦ [p 7→ sr [y]],R ◦ ℓ,E⟩])[⃗c] ⊑ [p 7→ αF (r)[ℓc][y]]

for which it suffies to show, for some arbitrary ⟨s ◦ sr ,R,E⟩ ∈ r [ℓc] that:
αF ([⃗c 7→ K])[⃗c] ⊑ [p 7→ αF (r)[ℓc][y]]

where K = {⟨s ◦ sr ◦ [p 7→ sr [y]],R ◦ ℓ,E⟩}. From the new definition onV , for any variable
v , p, it is immediate thatV (K ,v) = ∅, whence we have that:

αF ([⃗c 7→ K])[⃗c][v] = αF (⊥R)[⃗c][v]

= ⊥R̃ [⃗c][v] =
[
p 7→ αF (r)[ℓc][y]

]
[v]

It therefore remains to show that
αF ([⃗c 7→ K])[⃗c][p] ⊑

[
p 7→ αF (r)[ℓc][y]

]
[p] = αF (r)[ℓc][y]

From the definition of K , we have that
V (K ,p) = {sr [y]} ⊆ V (r [ℓc],y)

whence by Eq. (20) we have the desired result.
Case ℓ◦r { ℓ

•
r : We will prove that, for some some arbitrary r , p ∈ pred (ℓr), ⟨s ◦ sr ◦ sc ,R,E⟩ ∈

r [p• { ℓ◦r] where ⟨s ◦ sr ,R,E⟩ ∈ r [ℓ◦c { ℓ•c] that:

αF ([ℓr 7→ J])[ℓr] ⊑ αF (r)[ℓc]
[
x 7→ αF (r)[p• { ℓ◦r][ρ]

]

where J = {⟨s ◦ sr [x 7→ sc [ρ]],R,E⟩}
For any variable v , x , we have thatV (J ,v) ⊆ V (r [ℓc],v), whence the inequality holds
by Eq. (20). For the variable x , we have that V (J ,x) ⊆ V (r [p• { ℓ◦r], ρ), whence the
inequality again holds by assumption on αF .

□

C FORMALISMS AND PROOFS FOR SUBFIXPOINT ITERATION

Before defining subfixpoint iteration, we introduce the following notation. Letm : T → U be a
map, whereU is a complete lattice. For S ⊆ T , define:

m⇂| S = λx .

m[x] x ∈ S

⊥U o.w .

We will abuse notation and for an element ⟨m̂,m̃⟩ : R, define ⟨m̂,m̃⟩|LA = m̂ and ⟨m̂,m̃⟩|LF = m̃.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:36 John Toman and Dan Grossman

We define the subfixpoint iteration process as a functionM : R → R:
M (X) =

〈⊔
i<ω

U i (înj (X)) |LA ,
⊔
i<ω

T (ĩnj (X)⇂| LA)
i (⊥) |LF

〉
U (X) = X ⇂| LF ⊔ F̂ (X)⇂| LA

T (m) (X) =m⇂| LA ⊔ I⊤ (X)⇂| LF
In the above definitions, the U and T play the role of iterating the two interpreters to fixpoint.8 In
the definition of U , after abstract semantic function F̂ is applied to the input argument, the results
from this application inLF are discarded in favor of the values in the input argumentX . Thus, while
iteratingU i (înj (X)), the states at flow edges LF are effectively fixed to înj (X)⇂| LF , while the states
at flow edges LA evolve through repeated application of F̂ . The definition ofT is similar; except the
state information in application code is fixed while the state information in the framework evolves
via application of I⊤. Unlike the ⊔i<ωU i (înj (X)) term, ⊔i<ωT (ĩnj (X)⇂| LA)

i (⊥) iterates from bottom,
discarding information computed in previous rounds of iteration as described in Section 6.

We first prove thatM is monotone.

Lemma 8.
(1) ∀m,m′,X ,X ′ : R̃.m ⊑m′ ∧ X ⊑ X ′ ⇒ T (m) (X) ⊑ T (m′) (X ′)
(2) ∀m,m′,X ,X ′ : R̃.m ⊑m′ ∧ X ⊑ X ′ ⇒ ⊔i<ωT (m)i (X) ⊑ ⊔i<ωT (m

′)i (X ′)

(3) ∀X ,X ′ : R̂.X ⊑ X ′ ⇒ U (X) ⊑ U (X ′)

(4) ∀X ,X ′ : R̂.X ⊑ X ′ ⇒ ⊔i<ωU
i (X) ⊑ ⊔i<ωU

i (X ′)

Proof.
(1) By cases on whether ℓ⃗ ∈ LA or ℓ⃗ ∈ LF :

Case ℓ⃗ ∈ LF : T (m) (X)[ℓ⃗] = I⊤ (X)[ℓ⃗] ⊑ I⊤ (X
′)[ℓ⃗] = T (m′) (X ′)[ℓ⃗] by the monotonicity of I⊤

(by Lemma 18, proved below).
Case ℓ⃗ ∈ LA: T (m) (X)[ℓ⃗] =m[ℓ⃗] ⊑m′[ℓ⃗] = T (m′) (X ′)[ℓ⃗] by assumption.

(2) By induction, using themonotonicity ofT shown above it can be shown that∀i < ω .T (m)i (X) ⊑
T (m′)i (X ′), whence the result follows from the definition of least upper bounds.

(3) Immediate from the fact that F̂ is monotone.
(4) By similar proof to (2) above.

□

Theorem 5. M is monotone.

Proof. Immediate from parts 2 and 4 of Lemma 8 and the monotonicity of τ̃ and τ̂ . □

We next define two ordinal termed sequences Cδ ∈µ andMδ ∈µ , where µ is an ordinal defined as
in [Cousot and Cousot 1979a], via transfinite recursion as:

C0 = ⊥R
Cδ+1 = C (Cδ)
Cλ =

⊔
β<λ C

β

M0 = ⊥R
Mδ+1 = M (Mδ)
Mλ =

⊔
β<λM

β

As bothM and C are monotone functions over complete lattices, then by Corollary 3.3 of [Cousot
and Cousot 1979a], the limit of Cδ ∈µ , Cϵ , exists and is the least fixpoint of C and the limit ofMδ ∈µ

also exists and is a least fixed point ofM .
Before proceeding, we first show how to (almost) instantiate the asynchronous chaotic iteration

with memory strategy defined by [Cousot 1977] to give an equivalent definition of subfixpoint
8We have not justified here that the term ⊔i<ωU i (înj (X)) is a fixpoint of U , nor that a fixed point of this function exists.
However, we chose this definition for the parallel to the widening definitions presented below; which we prove converges
to a fixed-point. If F̂ is ω-upper-continuous, then the U term converges to a fixpoint, as proved in Appendix C.5.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:37

iteration. (In the following, for continuity of notation, we will use F as the monotone function over
a lattice (Ln)m → Ln , and not the concrete semantic function of Section 3.2.)

Assume some isomorphism ξ between {0, . . . , |L|} and L. We can define an indexed representa-
tion of an element of R, where Xi corresponds to the mostly-concrete or abstract state at ξ (i). We
takem = 3, and for any i such that ξ (i) ∈ LA, define:

Fi (I ,E,D) = F̂ (înj (η(I ,E)))[ξ (i)]

η(I ,E) =
〈
λℓ⃗a : LA.Iξ −1 (ℓ⃗a), λℓ⃗f : LF : Eξ −1 (ℓ⃗f)

〉
η transforms the indexed representation into the product-of-maps representation expected by înj.
When constructing the abstract state map it uses the values from I , and those from E to construct
the mostly-concrete map.

For i such that ξ (i) ∈ LF , define:
Fi (I ,E,D) = I⊤ (ĩnj (χ (D)))[ξ (i)]

χ (D) =
〈
λℓ⃗a : LA.Dξ −1 (ℓ⃗a)

, λℓ⃗f : LF .Dξ −1 (ℓ⃗f)

〉
Like η, χ transforms the indexed representation into a map representation, using D for states in
LF and LA. Clearly, F ◦ σ = C .
We will now define the ordinal termed sequences S of indices that specify the values of I , E, and

D. When indexing S , we take I ≡ 1, E ≡ 2, and D ≡ 3. Then:

(Sδ+1I)i = δ

(Sδ+1E)i = λ (where λ is the largest limit ordinal ≤ δ)

(Sδ+1D)i =

Sδ+1E ξ (i) ∈ LA

0 ξ (i) ∈ LF ∧ δ = λ (where λ is a limit ordinal)
δ o.w .

We do not define the value of S j at the limit ordinals as they are not used during iteration, we
assume they take some value consistent with the requirements given in [Cousot 1977].

These definitions imply that I always holds the values computed in the last round of iteration, E
holds the values computed at the most recent limit ordinal, and D holds the values of at the most
recent limit ordinal for states at LA, ⊥S̃ for LF at the immediate successor to some limit ordinal,
and the value from the previous iteration otherwise (we assume that X 0

i = ⊥ for all i).
It should be clear that the value computed at M (⊥R)[ℓ⃗] corresponds to the values computed

at Xξ −1 (ℓ⃗) at ω. However, our limiting behavior at all other limit ordinals is different:M takes the
limits of new sequences, whereas at the limit ordinals the sequence defined in [Cousot 1977] take
the limit over the entire preceding sequence of values. In addition, the definition of SD violates
requirement 3.1.(d). As a result, although we have that the limit ofMδ exists and is a least fixed
point ofM , it is not immediate that this is equal to lfpC .
We therefore directly prove our desired result:

Theorem 6. lfpM = lfpC

C.1 Technical Lemmas

Before proving Theorem 6 we need the following technical lemmas.

Lemma 9. The function T (m) (X) is ω-upper-continuous in its second argument.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:38 John Toman and Dan Grossman

Proof.⊔
n

T (m) (xn) =
⊔
n

I⊤ (xn)⇂| LF ⊔m⇂| LA

=m⇂| LA ⊔
⊔
n

I⊤ (xn)⇂| LF

=m⇂| LA ⊔ I⊤ (
⊔
n

xn)⇂| LF (by the ω-upper-continuity of I⊤, see Appendix C.1.1)

= T (m) (
⊔
n

xn)

□

Theorem 7. The limit of T (m) (i ∈N) (⊥) exists and is a fixpoint of T (m) for anym.

Proof. Follows immediately from Lemma 9 and Kleene’s fixpoint theorem. □

Let us recall the following facts from [Cousot and Cousot 1979a]:
(1) The least upper bound of a (potentially infinite) set S of post-fixed points of a monotone

function F is itself a post-fixed point of F
(2) For a monotone function д : L → L on a complete lattice L, the ordinal termed sequence

defined as:
G

0 = ⊥L

G
δ+1 = д(Gδ)

G
λ =
⊔
α<λ

G
α

is increasing
Next define the family of sequences Tδm ,δ ∈ Ord via transfinite recursion as:

T
0
m = ⊥R̃

T
δ+1
m = T (m) (Tδm)

T
λ
m =

⊔
α<λ

T
α
m

By the monotonicity of T we have that all such sequences are increasing, and by Theorem 7 the
limit of all sequences exist and is Tωm .

Lemma 10. ∀m,δ ∈ Ord .Tδm ⊑ Tωm
Proof. Immediate from the definition of Tδm and by the fact that Tωm is the least fixpoint of

T (m). □

C.1.1 Continuity of I⊤. We now demonstrate the ω-upper-continuity of I⊤ on increasing chains of
R̃.

Lemma 11. For any increasing chain xi : ℘(Vf)⊤, v ∈
⊔

i xi ⇒ ∃k .v ∈ xk

Proof. First, observe that by the definition of least upper bound, if (
⊔

i xi) , ⊤F , then ∀i,xi ,,
⊤F . Thus, by the definition of

⊔
in ℘(Vf)⊤ as a union over the sets xi , v ∈

⊔
i xi implies there is

some set in the chain xi , that contains v . We let j be the smallest such x j containing x j . □

Corollary 11.1. For an increasing chain of products ci ≡ ⟨x1, . . . ,xn⟩i : ℘(Vf)⊤ × . . . ℘(Vf)⊤,
if there exists some ⟨v1, . . . ,vn⟩ such that ∀j .vj ∈ πj (

⊔
i ci), then there exists some k such that

∀j .vj ∈ πj (ck).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:39

Proof. By pointwise application of Lemma 11, for each j there must be some kj such that
vj ∈ πj (ck). Let m be the max over these kj . As the chain ci is increasing, if vj ∈ πj (ckj), then
necessarily vj ∈ πj (cm). □

Lemma 12. IJfopK is ω-upper-continuous for all increasing chains argi : ℘(Vf)⊤ × . . . × ℘(Vf)⊤

Proof. Consider the case where, for some j and k , πj (argk) = ⊤F . Then IJfopK(argk) = ⊤F , and
further πj (

⊔
i argi) = ⊤F whence IJfopK(⊔i argi) = ⊤F .

Consider now the case where the chain contains no ⊤F values. Then, by the definition of JfopK
and IJfopK, the sequence IJfopK(argi) will not contain ⊤F , and thus

⊔
i
IJfopK(argi) will not equal ⊤F ,

and similarly IJfopK(⊔i argi) , ⊤F .
It therefore suffices to show that v ∈

⊔
i
IJfopK(argi) ⇔ v ∈ IJfopK(⊔i argi).

Case⇒: By the definition of lub and IJfopK, ∃k .v ∈ JfopK(argk). But then ∀j .πj (argk) ⊑
πj (
⊔

i argi) and thus by definition of IJfopK, v ∈ IJfopK(⊔i argi).
Case⇐: If v ∈ IJfopK(⊔i argi), then there must exist some set of values vj and some E ∈ E

such that ∀j .vj ∈ πj (
⊔

i argi) and JfopK(E,v0, . . . ,vn) = ⟨v, _⟩. By Corollary 11.1, there must
be some k , such that ∀j .vj ∈ πj (argk), whence v ∈ IJfopK(argk) ⊑

⊔
i
IJfopK(argi).

□

Lemma 13. IJfopK is pointwise monotone.

Proof. Consider the case of some IJfopK(v0, . . . ,vn)where one ofvi = ⊤F . Then, IJfopK(v0, . . . ,vn) =
⊤F , and for any v ′j , vj ⊑ v ′j ⇒ v ′j = ⊤F , whence IJfopK(v ′0, . . . ,v ′n) = ⊤F , for any values v ′i point-
wise greater than vi . Next, consider the case of some arguments vi ⊑ v ′i , where ∀j .vj , ⊤F . Then
IJfopK(v0, . . . ,vn) , ⊤F . If any of v ′i is ⊤F , then monotonicity holds trivially. Finally, consider
when, for each j, vj ⊆ v ′j . Then by the definition of IJfopK, it is immediate that IJfopK(v0, . . . ,vn) ⊆
IJfopK(v ′0, . . . ,v ′n). □

Lemma 14. If si : S̃ is an increasing sequence, and if for such sequences
⊔

i f (si) = f (
⊔

i si), then:
∀x .Q =

⊔
i si [x 7→ f (si)] = (

⊔
si)[x 7→ f (

⊔
i si)] = R.

Proof. Q[x] =
⊔

i f (si) = f (
⊔

i si) = R[x] and Q[y , x] =
⊔

i si [y] = (
⊔

i si)[y] = R[y]. □

Lemma 15. For an increasing sequence si : S̃ , ∀ℓ.
⊔

i step⊤ (si , ℓ) = step⊤ (
⊔

i si , ℓ).

Proof. By cases on the branch taken in step⊤:
Branch (5): Trivial
Branches (6, 7, 9): Follows from the Lemma 14 and that λ_.⊤Â, λ_.{Jbcf K}, and λs .s[y] are

trivially continuous on increasing sequences.
Branch (8): From Lemma 14 and Lemma 12.

□

Lemma 16. step⊤ is monotone.

Proof. Immediate from the monotonicity of IJfopK (Lemma 13), and the definition of step⊤. □

Lemma 17.
(1) ∀̃r , r̃ ′,p• { ℓ◦.F̃ T (̃r ,p• { ℓ◦) ∧ r̃ ⊑ r̃ ′ ⇒ F̃ T (̃r ′,p• { ℓ◦)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:40 John Toman and Dan Grossman

(2) For an increasing sequence ri , ∀p• { ℓ◦.F̃ T (
⊔

i ri ,p
• { ℓ◦) ⇔ ∃j .F̃ T (r j ,p

• { ℓ◦)

Proof.
(1) Let s̃ = r̃ [p] and s̃ ′ = r̃ ′[p]. Consider by cases why F̃ T returned true:

Branch 2 Then s̃[x]IJ<=>K̃s[y], thus either s̃[x] = ⊤F , s̃[y] = ⊤F , orv ∈ s̃[x] andv ′ ∈ s̃[y] such
that vJ<=>Kv ′. In the former two cases, s̃ ′[x] or s̃ ′[y] must also ⊤F , and thus s̃ ′[x]IJ<=>K̃s ′[y].
Consider the final case. Then by definition of ⊑, s̃ ′[x] = ⊤F or s̃[x] ⊆ s̃ ′[x] and similarly
for s̃[y] and s̃ ′[y]. In the case where either s̃ ′[x] or s̃ ′[y] is ⊤F , then s̃ ′[x]IJ<=>K̃s ′[y] trivially
returns true. Otherwise, we have v ∈ s̃ ′[x] and similarly for v ′ and s̃ ′[y], and thus by
definition s̃ ′[x]IJ<=>K̃s ′[y] holds.

Branch 3 By similar reasoning to the above, but on the definition of IJ<,>K.
Branch 4 F̃ T must always return true.

(2) For the forward impliciation, consider by cases why F̃ T returned true:
Branch 2 By similar reasoning to the above, and without loss of generality, let us consider

the case where (
⊔

i ri)[p][x] = ⊤F . Then, there must exist some j such that r j [p][x] = ⊤F ,
and thus F̃ T (r j ,p

• { ℓ◦) trivially returns true. The case when (
⊔

i ri)[p][y] = ⊤F
follows from similar reasoning. Finally, let us consider the case where v ∈ (

⊔
i ri)[p][x],

v ′ ∈ (
⊔

i ri)[p][y], and vJ<=>Kv ′. By Corollary 11.1, there must exists some j, such that
v ∈ r j [p][x] and v ′ ∈ r j [p][y], whence r j [p][x]IJ<=>Kr j [p][y] and thus F̃ T (r j ,p

• { ℓ◦)
must return true.

Branch 3 By similar reasoning to the above.
Branch 4 ∀j .F̃ T (r j ,p, ℓ) must be true.
The backward impliciation follows immediately from part one of the lemma and from the
fact that ∀j .r j ⊑

⊔
i ri .

□

Lemma 18. I⊤ is monotone

Proof. Consider some r̃ ⊑ r̃ ′, and some arbitrary ℓ◦ { ℓ•:
I⊤ (̃r)[ℓ◦ { ℓ•] = step⊤ (

⊔
p∈pred (ℓ)

r̃ [p• { ℓ◦], ℓ)

⊑ step⊤ (
⊔

p∈pred (ℓ)

r̃ ′[p• { ℓ◦], ℓ) (Lemma 16)

= I⊤ (̃r
′)[ℓ]

We have ignored the initialization terms, as it is constant and by the monotonicity of least upper
bounds as step⊤ is monotone monotonicity is preserved.

Next, consider some p• { ℓ◦, and whether F̃ T (̃r ,p• { ℓ◦) is true. If so, then Lemma 17 implies
that F̃ T (̃r ′,p• { ℓ◦) must also be true, which from the fact that r̃ [p◦ { p•] ⊑ r̃ ′[p◦ { p•], gives
us that I⊤ (̃r)[p• { ℓ◦] = I⊤ (̃r

′)[p• { ℓ◦]. Otherwise, I⊤ (̃r)[p• { ℓ◦] = ⊥ ⊑ I⊤ (̃r
′)[p• { ℓ◦]. □

We can now prove the continuity of I⊤.

Theorem 8. For an increasing sequence ri : R̃, I⊤ is continuous.

Proof. We first note that the initialization term of I⊤ at the start label s is a constant term and
can be easily factored out.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:41

It suffices to consider an arbitrary ℓ◦ { ℓ• and p• { ℓ◦.⊔
i

I⊤ (ri)[ℓ◦ { ℓ•] =
⊔
i

step⊤ (
⊔

p∈pred (ℓ)

ri [p• { ℓ◦], ℓ)

= step⊤ (
⊔
i

⊔
p∈pred (ℓ)

ri [p• { ℓ◦], ℓ)

= step⊤ (
⊔

p∈pred (ℓ)

(
⊔
i

ri)[p• { ℓ◦], ℓ)

= I⊤ (
⊔
i

ri)[ℓ]

The second equality follows from ⊔p∈pred (ℓ)ri [p• { ℓ◦] being and increasing sequence and
Lemma 15.

Next, let us consider some p• { ℓ◦. Consider the case where F̃ T (
⊔

i ri ,p
• { ℓ◦) is false, thus

I⊤ (
⊔

i ri)[p• { ℓ◦] = ⊥. By Lemma 17 (2), we have that ∀j .F̃ T (r j ,p
• { ℓ◦) is also false, and thus⊔

i I⊤ (ri)[p• { ℓ◦] =
⊔

i ⊥ = I⊤ (
⊔

i ri)[p• { ℓ◦].
Finally, consider the case where F̃ T (

⊔
i ri ,p

• { ℓ◦) is true, whence I⊤ (
⊔

i ri ,)[p• { ℓ◦] =⊔
i ri [p◦ { p•]. By Lemma 17, there exists some j such that ∀k ≥ j .F̃ T (rk ,p

• { ℓ◦) is true. As
I⊤ is monotone, we have that I⊤ (ri) is an increasing sequence, and thus[⊔

i

I⊤ (ri)
]
[p• { ℓ◦] =

[⊔
k≥j

I⊤ (rk)
]
[p• { ℓ◦] (I⊤ (ri) is increasing)

=
⊔
k≥j

rk [p◦ { p•] (As ∀k ≥ j .F̃ T (rk ,p
• { ℓ◦) must be true)

=
⊔
i

ri [p◦ { p•] (ri is increasing)

= I⊤ (
⊔
i

ri)[p• { ℓ◦]

□

C.2 Cϵ ⊑ Mϵ

We first need the following lemmas.

Lemma 19. ∀ℓ⃗ ∈ LA,X ⊑ X ′ ∈ R.F̂ ◦ înj (X)[ℓ⃗] ⊑
⊔

i<ω U i (înj (X ′))[ℓ⃗]

Proof.
F̂ (înj (X))[ℓ⃗] ⊑ F̂ (înj (X ′))[ℓ⃗] = U (înj (X ′)[ℓ⃗] ⊑

⊔
i<ω

U i (înj (X ′))[ℓ⃗]

□

Lemma 20. ∀m, ℓ ∈ LA,δ ∈ Ord .δ > 0⇒ Tδm[ℓ] =m[ℓ]

Proof. By an easy transfinite induction argument, at a successor ordinal δ + 1: Tδ+1m [ℓ] =
T (m) (Tδm)[ℓ] =m[ℓ]

At a limit ordinal, we have that Tλm[ℓ] =
⊔

α<λ T
α
m[ℓ] = ⊥ ⊔

⊔
α<λ T

α+1
m [ℓ] =

⊔
α<λ T

α+1
m [ℓ] =⊔

α<λm[ℓ] =m[ℓ] □

Lemma 21. ∀δ ∈ µ,m.Cδ |LA ⊑m |LA ⇒ Cδ+1 |LF ⊑ Tδ+2G |LF where G = ĩnj (m)⇂| LA

Proof. By transfinite induction on δ :

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:42 John Toman and Dan Grossman

Case δ = 0: It suffices to show that for some ℓ ∈ LF , C1[ℓ] = C (⊥R)[ℓ] = I⊤ (ĩnj (⊥R))[ℓ⃗] ⊑
T2G [ℓ] = I⊤ (T

1
G)[ℓ]. This follows from the monotonicity of I⊤ if we show that ĩnj (⊥R) ⊑ T

1
G .

At points in LF this is immediate, as ĩnj (⊥R)[ℓ⃗
′ ∈ LF] = ⊥S̃ ⊑ T

1
G [ℓ⃗

′]. At some point
ℓ⃗′ ∈ LA, observe that ĩnj (⊥R)[ℓ⃗

′] = τ̃ (⊥Ŝ), and by Lemma 20 we have that T1G [ℓ⃗
′] = G[ℓ⃗′] =

ĩnj (m)⇂| LA [ℓ⃗
′] = τ̃ (m[ℓ⃗′]), whence the result holds from the monotonicity of τ̃ .

Case δ + 1: It suffices to show that for some ℓ ∈ LF we have Cδ+2[ℓ] = I⊤ (ĩnj (C
δ+1))[ℓ] ⊑

Tδ+3m [ℓ] = I⊤ (T
δ+2
m)[ℓ], which holds if we can prove that ĩnj (Cδ+1) ⊑ Tδ+2G .

As the sequence C is increasing, we have that Cδ ⊑ Cδ+1, whence by transitivity we have
that Cδ |LA ⊑m |LA , thus by the inductive hypothesis, we have Cδ+1 |LF ⊑ Tδ+2G |LF .
To establish the required inequality, we proceed by subcases on the partition of some arbitrary
ℓ⃗′:
Subcase ℓ⃗′ ∈ LF : ĩnj (C

δ+1)[ℓ⃗′] = Cδ+1[ℓ⃗′] ⊑ Tδ+2G |LF [ℓ⃗′] = Tδ+2G [ℓ⃗′], where the inequality
holds from the application of the inductive hypothesis.

Subcase ℓ⃗′ ∈ LA: ĩnj (C
δ+1)[ℓ⃗′] = τ̃ (Cδ+1[ℓ⃗′]) ⊑ τ̃ (m[ℓ⃗′]) = ĩnj (m)[ℓ⃗′] = G[ℓ⃗′] = Tδ+2G [ℓ⃗′]

where the final equality follows from Lemma 20, and the inequality follows from the
assumption Cδ+1 |LA ⊑m |LA and the monotonicity of τ̃ .

Case δ = λ: If we show that ĩnj (Cλ) ⊑ TλG , then we will have, for all ℓ⃗ ∈ LF :
C
λ+1[ℓ⃗] = I⊤ (ĩnj (C

λ))[ℓ⃗] ⊑ I⊤ (T
λ
G)[ℓ⃗] = T

λ+1
G [ℓ⃗] ⊑ Tλ+2G [ℓ⃗]

Expanding definitions, we must therefore show that
ĩnj (
⊔
β<λ

C
β) ⊑

⊔
β<λ

T
β
G = T

λ
G

We show the inequality by cases:
Subcase ℓ⃗ ∈ LA:

ĩnj (
⊔
β<λ

C
β)[ℓ⃗] = τ̃ (

⊔
β<λ

C
β [ℓ⃗]) = τ̃ (Cλ[ℓ⃗]) ⊑ τ̃ (m[ℓ⃗]) = ĩnj (m)⇂| LA [ℓ⃗] = T

λ
G [ℓ⃗]

Where the final equality again follows from Lemma 20.
Subcase ℓ⃗ ∈ LF : It suffices to show that:

ĩnj (
⊔
β<λ

C
β)[ℓ⃗] =

⊔
β<λ

C
β [ℓ⃗] = ⊥ ⊔

⊔
β<λ

C
β+1[ℓ⃗] =

⊔
β<λ

C
β+1[ℓ⃗] ⊑ TλG [ℓ⃗]

that is, TλG [ℓ⃗] is an upper bound for every Cβ+1[ℓ⃗]
By the definition of least upper bounds, we have that ∀α < λ.Cα |LA ⊑ C

λ |LA ⊑ m |LA ,
whence by the transfinite hypothesis we have

∀α < λ.Cα+1[ℓ⃗] = Cα+1 |LF [ℓ⃗] ⊑ T
α+2
G |LF [ℓ⃗] = T

α+2
G [ℓ⃗]

⊑
⊔
β<λ

T
β
G [ℓ⃗] = T

λ
G [ℓ⃗]

which shows the upper bound as required.
□

Now, to prove Cϵ ⊑ Mϵ , we prove the following:

Lemma 22. ∀δ ∈ µ .Cδ ⊑ Mδ

Proof. By transfinite induction on δ .
Case δ = 0: Trivial, C0 = ⊥ = M0

Case δ + 1: It suffices to show that for any ℓ⃗ ∈ LA, Cδ+1[ℓ⃗] ⊑ Mδ+1[ℓ⃗] and similarly for ℓ⃗ ∈ LF .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:43

Subcase ℓ ∈ LA: We must show that:
C (Cδ)[ℓ⃗] = F̂ (înj (Cδ))[ℓ] ⊑

⊔
i<ω

U i (înj (Mδ))[ℓ⃗]

which follows from the induction hypothesis, the monotonicity of înj, and Lemma 19.
Subcase ℓ ∈ LF : We must show that Cδ+1[ℓ] ⊑ [

⊔
i<ω T (ĩnj (M

δ)⇂| LA)
i (⊥)][ℓ] = Tω

G
[ℓ],

where G = ĩnj (Mδ)⇂| LA . From the induction hypothesis, we have that Cδ ⊑ Mδ , from
which it follows that Cδ |LA ⊑ Mδ |LA . Thus, by Lemma 21 we conclude that:

C
δ+1[ℓ] ⊑ Tδ+2

G
[ℓ] ⊑ Tω

G
[ℓ] (by Lemma 10)

Case δ = λ: Follows immediately from the definition of least-upper bound, transitivity, and the
fact that, ∀β < λ.Cβ ⊑ Mβ .

□

Theorem 9. Cϵ ⊑ Mϵ

Proof. Immediate from Lemma 22. □

C.3 Mϵ ⊑ Cϵ

We first need the following lemma:

Lemma 23. ∀i ∈ N,X : R.X ⊑ Cϵ ⇒ T (ĩnj (X)⇂| LA)
i (⊥) ⊑ ĩnj (Cϵ)

Proof. By induction on i .
Case i = 0: Trivial
Case i + 1: We assume T (ĩnj (X)⇂| LA)

i (⊥) ⊑ ĩnj (Cϵ) and show that T (ĩnj (X)⇂| LA)
i+1 (⊥) ⊑

ĩnj (Cϵ). At ℓ⃗ ∈ LA, by Lemma 20 we have that T (ĩnj (X)⇂| LA)
i+1 (⊥)[ℓ⃗] = ĩnj (X)⇂| LA [ℓ⃗] =

τ̃ (X [ℓ⃗]) ⊑ τ̃ (Cϵ [ℓ⃗]) = ĩnj (Cϵ)[ℓ⃗]. It remains to show that the inequality holds at some ℓ⃗ ∈ LF .
By expanding definitions we have: T (ĩnj (X)⇂| LA)

i+1 (⊥)[ℓ⃗] = I⊤ (T (ĩnj (X)⇂| LA)
i (⊥))[ℓ⃗] ⊑

I⊤ (ĩnj (C
ϵ))[ℓ⃗] = C (Cϵ)[ℓ⃗] = ĩnj (C (Cϵ))[ℓ⃗] = ĩnj (Cϵ)[ℓ⃗], where the inequality holds from

the monotonicity of I⊤ and the induction hypothesis, and the final equality comes from the
definition of Cϵ as a fixed point of C .

□

Lemma 24. ∀i ∈ N,X : R.X ⊑ Cϵ ⇒ U i (înj (X)) ⊑ înj (Cϵ)

Proof. By induction on i .
Case i = 0: Trivial, by the monotonicity of înj.
Case i + 1: By a similar argument to that made in Lemma 23, except on the monotonicity of F̂ .

□

We next prove the following theorem:

Theorem 10. ∀δ ∈ µ .Mδ ⊑ Cϵ

Proof. By transfinite induction on δ .
Case δ = 0: Trivial asM0 = ⊥.
Case δ + 1: It sufficient to show that ∀ℓ⃗.Mδ+1[ℓ⃗] ⊑ Cϵ [ℓ⃗]. We proceed by the partition of ℓ⃗:
Subcase ℓ⃗ ∈ LA: M

δ+1[ℓ⃗] = [
⊔

i<ω U i (înj (Mδ))][ℓ⃗] ⊑ înj (Cϵ)[ℓ⃗] = Cϵ [ℓ⃗], where the in-
equality holds from using the inductive hypothesis and Lemma 24 to show that înj (Cϵ)[ℓ⃗]
is an upper bound and thus greater than the least upper bound.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:44 John Toman and Dan Grossman

Subcase ℓ ∈ LF : By a similar argument to the LA case, but using Lemma 23.
Case δ = λ: : By the transfinite hypothesis, ∀α < λ.Mα ⊑ Cϵ , thus:

⊔
α<λM

α ⊑ Cϵ .
□

Corollary 10.1. Mϵ ⊑ Cϵ

Proof. Follows immediately from Theorem 10 and the definition of Mϵ as the limit of the
sequenceMδ ∈µ . □

C.4 Proof of Theorem 6

Immediate from the definitions of lfpM = Mϵ and lfpC = Cϵ , anti-symmetry, Theorem 9, and
Corollary 10.1.

C.5 Fixpoints in the Abstract Interpreter

If F̂ is upper-ω-continuous, then the sequence U i (înj (Mδ)) converges to a fixpoint for all δ . To
show this result, it is sufficient to show that the sequenceU i (înj (Mδ)) is increasing for all δ . The
result will then follow from a modified version of Kleene’s fixpoint theorem. In the following, M̂δ

denotes înj (Mδ).

Lemma 25. ∀δ ,k .U k (M̂δ) ⊑ EMδ+1

Proof. By cases. If k = 0, then the result is immediate, asMδ is increasing, înj is monotone.
For k > 0, we establish the result pointwise. At ℓ⃗ ∈ LF , U k (M̂δ)[ℓ⃗] = M̂δ [ℓ⃗], whence the

inequality holds by the reasoning above. At ℓ⃗ ∈ LA, we have:
U k (M̂δ)[ℓ⃗] ⊑

⊔
i

U i (M̂δ)[ℓ⃗] = Mδ+1[ℓ⃗] = înj (Mδ+1)[ℓ⃗]

□

Next define the following monotone function PF : R → R:
PF = λ⟨m̃,m̂⟩.⟨m̃,U (înj (⟨m̃,m̂⟩)) |LA ⟩

Lemma 26. ∀δ .Mδ ⊑ PF (Mδ)

Proof. By transfinite induction.
Case δ = 0: Trivial.
Case δ + 1: The inequality is immediate at all points in LF . We must therefore establish the

inequality at some ℓ⃗ ∈ LA.
AsMδ+1[ℓ⃗] =

⊔
i U

i (M̂δ)[ℓ⃗], it suffices to show that for all i , U i (M̂δ)[ℓ⃗] ⊑ U (EMδ+1)[ℓ⃗] =
PF (Mδ+1)[ℓ⃗]. We consider the form of i .
Subcase i = 0: we must show that M̂δ [ℓ⃗] = Mδ [ℓ⃗] ⊑ U (EMδ+1)[ℓ⃗]. By the induction hypothe-

sis, we have thatMδ ⊑ PF (Mδ), whence we haveMδ [ℓ⃗] ⊑ PF (Mδ)[ℓ⃗] = U (înj (Mδ))[ℓ⃗] ⊑
U (înj (Mδ+1))[ℓ⃗], from the monotonicity ofU and înj and the fact thatMδ is inreasing.

Subcase i > 0: Then i = k+1 for somek , whencewemust showU i (M̂δ)[ℓ⃗] = U (U k (M̂δ))[ℓ⃗] ⊑
U (EMδ+1)[ℓ⃗]. By the monotonicity of U , it suffices to show that U k (M̂δ) ⊑ EMδ+1, which
holds from Lemma 25.

Case δ = λ: By the induction hypothesis,Mλ is defined as the least upper bound of post-fixed
points of PF , whenceMλ is also a post-fixed point of PF .

□

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:45

Theorem 11. ∀δ ∈ Ord, the sequenceU i (M̂δ) is increasing.

Proof. We will prove the sequence increasing by induction on i for some arbitrary δ .
Case i = 0: The inequality is immediate at ℓ⃗ ∈ LF . At ℓ⃗ ∈ LA, we have: înj (Mδ)[ℓ⃗] = Mδ [ℓ⃗] ⊑

PF (Mδ)[ℓ⃗] = U (înj (Mδ))[ℓ⃗] = U 1 (M̂δ)[ℓ⃗] by Lemma 26.
Case i + 1: Immediate from the monotonicity ofU and the induction hypothesis.

□

D FORMALISMS, SOUNDNESS, AND TERMINATION OFWIDENING ITERATION

We first define the instrumented semantic functions and extend the iteration functions defined in
Appendix C:

F̂▽ (X) =

X [ℓ⃗]▽̂F̂ (X)[ℓ⃗] ℓ⃗ ∈ WA

F̂ (X)[ℓ⃗] o.w .
I▽⊤ (X) =

X [ℓ⃗]▽̃I⊤ (X)[ℓ⃗] ℓ⃗ ∈ WF

I⊤ (X)[ℓ⃗] o.w .

T▽ (m) (X) =m⇂| LA ⊔ I
▽
⊤ (X)⇂| LF U▽ (X) = X ⇂| LF ⊔ F̂▽ (X)⇂| LA

M▽ (X) =
〈⊔
i<ω

U i
▽ (înj (X)) |LA , X |LF ⊔

⊔
i<ω

T▽ (ĩnj (X) |LA)
i (⊥) |LF

〉
We recall that ▽̂ is a widening operator on abstract states provided by the analysis, and ▽̃ is the

widening operator on mostly-concrete states, defined as

⟨mf ,ma⟩▽̃⟨m
′
f ,m

′
a⟩ =

〈(
λx : Xf .

mf m′f [x] ⊑mf [x]
⊤F o.w .

)
,
(
λx : Xa .ma[x]▽Âm

′
a[x]
)〉

where ▽Â is a widening operator on values from Â provided by the analysis. We assume that
⊥▽Â x = x and similarly that ⊥▽̂x = x .
These functions mirror the definitions in Appendix C, with two key differences. First, F̂▽ and

I▽⊤ apply the widening operator at the widening points, which ensures termination (as we prove
below). In addition, M▽ extends the mostly-concrete iteration term to join the results of mostly-
concrete iteration with the input states. This joining ensures that the iteration is increasing, which
is a key condition of our termination proofs.

D.1 Soundness

We first prove the soundness of the widening version of subfixpoint iteration. Define a sequence
M

δ ∈µ
▽ as:

M
0
▽ = ⊥ M

δ+1
▽ = M▽ (M

δ
▽) M

λ
▽ =
⊔
β<λ

M
β
▽

We have shown that this sequence over-approximates the sequenceMδ as follows:

Theorem 12. ∀δ .Mδ ⊑ Mδ
▽

Lemma 27. ∀i ∈ N,m,m′ : R̃.m ⊑m′ ⇒ T (m)i (⊥) ⊑ T▽ (m
′)i (⊥)

Proof. By induction on i .
Case i = 0: Trivial
Case i + 1: For the values at ℓ⃗ ∈ LA, the inequality is immediate by the assumption onm and
m′. It remains to show that the inequality holds at some arbitrary ℓ⃗ ∈ LF . For ℓ⃗ ∈ WF ,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:46 John Toman and Dan Grossman

we have by the induction hypothesis T (m)i (⊥) ⊑ T▽ (m
′)i (⊥) whence from the monotonic-

ity of I⊤ we therefore have I⊤ (T (m)i (⊥)) ⊑ I⊤ (T▽ (m
′)i (⊥)), and thus: T (m)i+1 (⊥)[ℓ⃗] =

I⊤ (T (m)i (⊥))[ℓ⃗] ⊑ I⊤ (T▽ (m
′)i (⊥))[ℓ⃗] ⊑ T▽ (m′)i (⊥)[ℓ⃗]▽̃I⊤ (T▽ (m′)i (⊥))[ℓ⃗] = T▽ (m′)i+1 (⊥),

where the inequality holds as ▽̃ is an upper bound operator. For ℓ⃗ <WF , then the result
holds from the induction hypothesis and the monotonicity of I⊤.

□

Lemma 28. ∀i ∈ N,m,m′ : R̂.m ⊑m′ ⇒ U i (m) ⊑ U i
▽ (m

′)

Proof. By symmetric reasoning to that in Lemma 27, except using the monotonicity of F̂ and
that ▽̂ is an upper bound operator. □

Proof of Theorem 12. By transfinite induction. In the inductive step, the inductive hypothesis,
monotonicity of înj and ĩnj, and Lemmas 27 and 28 give that the subfixpoint terms ofMδ+1 are
smaller than those inMδ+1

▽ giving the desired result. The limit case follows from the definition of
least upper bounds. □

As a direct corollary of this theorem, we have: lfpC = lfpM = Mϵ ⊑ Mϵ
▽. If we show that if the

sequenceMδ
▽ converges in a finite number of k steps to a fixed-point of M▽, we will then have:

lfpC = lfpM = Mϵ ⊑ Mϵ
▽ = M

k
▽, i.e., αF (lfp F) ⊑ Mk

▽.

D.2 Termination

We first show that ∀i ∈ N, the sequenceMi
▽ is increasing.

Lemma 29. ∀j .Mj
▽ ⊑ M

j+1
▽

Proof. Consider an arbitrary j. We establish the inequality pointwise:

Case ℓ⃗ ∈ LF : M
j
▽[ℓ⃗] = M

j
▽ |LF [ℓ⃗] ⊑ M

j
▽ |LF [ℓ⃗]⊔

⊔
i<ω T▽ (ĩnj (M

j
▽)⇂| LA)

i (⊥) |LF [ℓ⃗] = M
j+1
▽ [ℓ⃗]

Case ℓ⃗ ∈ LA: M
j
▽[ℓ⃗] = înj (M

j
▽)[ℓ⃗] = U 0

▽ (înj (M
j
▽))[ℓ⃗] ⊑

⊔
i<ω U i

▽ (înj (M
j
▽))[ℓ⃗] = M

j+1
▽ [ℓ⃗]

□

We next show that every subfixpoint iteration in the abstract interpreter terminates. Define the
following family of sequences indexed by n:

P(n, j) = U
j
▽ (înj (M

n
▽))

We need the following lemma.

Lemma 30.
(1) ∀n.U n

▽ (înj (M
n
▽)) ⊑ înj (Mn+1

▽)

(2) The sequenceU j
▽ (înj (M

0
▽ = ⊥R)) is increasing.

(3) For all n and ℓ⃗ ∈ LA, if all sequences P(m<n, j) are increasing and converge in a finite number
of steps, then înj (Mn

▽)[ℓ⃗] = ⊥Ŝ or ∃k < n, j > 0.înj (Mn
▽)[ℓ⃗] = U

j
▽ (înj (M

k
▽))[ℓ⃗] .

(4) For all n, if all sequences P(m≤n, j) are increasing and converge in a finite number of steps, then
the sequenceU j

▽ (înj (M
n+1
▽)) is increasing.

Proof.
(1) At ℓ⃗ ∈ LF , we have that U n

▽ (înj (M
n
▽))[ℓ⃗] = înj (Mn

▽)[ℓ⃗] ⊑ înj (Mn+1
▽)[ℓ⃗] from Lemma 29. At

ℓ⃗ ∈ LA, we have:U n
▽ (înj (M

n
▽))[ℓ⃗] ⊑

⊔
i<ω U i

▽ (înj (M
n
▽))[ℓ⃗] = Mn+1

▽ [ℓ⃗] = înj (Mn+1
▽)[ℓ⃗].

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:47

(2) By straightforward induction on j, using the fact that F̂ is monotone and that ▽̂ is an upper
bound operator. The base case holds because at ℓ⃗ ∈ LA, înj (⊥R)[ℓ⃗] = ⊥Ŝ and for ℓ⃗ ∈ LF

∀i .U i
▽ (înj (⊥R))[ℓ⃗] = τ̂ (⊥S̃).

(3) By induction on n.
Case n = 0: Then înj (M0

▽)[ℓ⃗] = ⊥R[ℓ⃗] = ⊥Ŝ , trivially giving the desired result.
Case n + 1: Then înj (Mn+1

▽)[ℓ⃗] =
⊔

i<ω U i
▽ (înj (M

n
▽))[ℓ⃗]. By hypothesis, the sequenceU i

▽ (înj (M
n
▽))

is increasing and converges in a finite number of steps, whence ∃p.
⊔

i<ω U i
▽ (înj (M

n
▽))[ℓ⃗] =

U
p
▽ (înj (M

n
▽))[ℓ⃗]. If p = 0, then the inductive hypothesis gives us the desired result (it is

immediate that if the sequences P(m<n+1, j) are terminating increasing sequences, then the
sequences P(m<n, j) must as well). Otherwise, we take k = n, j = p completing the proof.

(4) By induction on j.
Case j = 0: We must show that înj (Mn+1

▽) ⊑ U▽ (înj (M
n+1
▽)). By cases:

Subcase ℓ⃗ ∈ WA: U▽ (înj (M
n+1
▽))[ℓ⃗] = F̂▽ (înj (M

n+1
▽))[ℓ⃗] = înj (Mn+1

▽)[ℓ⃗]▽̂F̂ (înj (Mn+1
▽))[ℓ⃗],

and we have the required inequality from ▽̂ being an upper bound operator.
Subcase ℓ⃗ ∈ LA ∧ ℓ⃗ <WA: We must show that

înj (Mn+1
▽)[ℓ⃗] ⊑ U▽ (înj (M

n+1
▽))[ℓ⃗] = F̂ (înj (Mn+1

▽))[ℓ⃗]
By hypothesis, the sequencesP(m≤n, j) are increasing. Asm ≤ n impliesm < n+1, we can
satisfy the hypothesis of part (3) for înj (Mn+1

▽). Suppose then that înj (Mn+1
▽)[ℓ⃗] = ⊥. Then

we trivially have înj (Mn+1
▽)[ℓ⃗] = ⊥ ⊑ F̂ (înj (Mn+1

▽))[ℓ⃗]. Next, suppose that there exists
some k < n+1, j > 0 such that înj (Mn+1

▽)[ℓ⃗] = U j
▽ (înj (M

k
▽))[ℓ⃗]. Expanding the definition

ofU▽, wemust then show thatU j
▽ (înj (M

k
▽))[ℓ⃗] = F̂ (U j−1

▽ (înj (Mk
▽)))[ℓ⃗] ⊑ F̂ (înj (Mn

▽))[ℓ⃗].
By part (1) and Lemma 29, we have thatU j−1

▽ (înj (Mk
▽)) ⊑ înj (Mk+1

▽) ⊑ înj (Mn+1
▽), giving

the desired result via monotonicity of F̂ .
Subcase ℓ⃗ ∈ LF : Trivial.

Case j + 1: Immediate at ℓ⃗ ∈ WA from the definition of ▽̂ as an upper bounds operator,
trivial at ℓ⃗ ∈ LF , and from the induction hypothesis and the monotonicity of F̂ for
ℓ⃗ ∈ LA ∧ ℓ⃗ <WA.

□

We are now ready to prove that, for any n, P(n, j) terminates in finite steps, i.e., the abstract
iteration terminates.

Theorem 13. ∀n.P(n, j) is an increasing sequence that converges in a finite number of steps.

Proof. By strong induction on n.
Case n = 0: Lemma 30 part (2) gives us that the sequence is increasing. To show that the

sequence converges in a finite number of steps, it suffices to show that all labels in the
widening set converge in a finite number of steps, whence the overall termination will follow
from the definiton of widening sets. Consider an arbitrary ℓ⃗ ∈ WA, and the values computed
at each element of the sequence P(0, j) .

P(0,0)[ℓ⃗] = înj (M0
▽)[ℓ⃗] = înj (⊥R)[ℓ⃗] = ⊥Ŝ

P(0,i+1)[ℓ⃗] = U▽ (U
i
▽ (înj (⊥R)))[ℓ⃗] = F̂▽ (U

i
▽ (înj (⊥R)))[ℓ⃗]

= U i
▽ (înj (⊥R))[ℓ⃗]▽̂F̂ (U

i
▽ (înj (⊥R)))[ℓ⃗]

= P(0,i)[ℓ⃗]▽̂F̂ (U i
▽ (înj (⊥R)))[ℓ⃗]

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:48 John Toman and Dan Grossman

By the definition of widening operators, this sequence will converge in a finite number
of steps (that the sequence ⊥Ŝ , F̂ (înj (⊥R)), . . . , F̂ (U

n
▽ (înj (⊥R))) is increasing follows from

Lemma 30 part (2) and the monotonicity of F̂). Thus, all widening points will converge in a
finite number of steps, implying that P(0, j) converges.

Case n + 1: We assume that all sequences P(m<n+1, j) are increasing and converge in a finite
number of steps. From Lemma 30 part (4), P(n+1, j) is increasing. To show that P(n+1, j) con-
verges in a finite number of steps, we will again show that any arbitrary widening point ℓ⃗ con-
verges in a finite number of steps. Define a sequence finitization operator ⌊S⌋ = ⟨s0, . . . , sk−1⟩
where si =Si+1 and k is defined as the smallest natural number such that:

k ≥ 1 ∀m ≥ k .Sm =Sk
In other words, the finitization operator extracts a sequence of at least length one, starting
from the second element of the sequence, up to the first element after which the sequence
repeats. This operation is undefined on sequences that do not converge in finite steps.
Define now the following sequence:

L =▷◁m<n+1 ⌊P(m, j)[ℓ⃗]⌋ ▷◁ P(n+1, j≥1)[ℓ⃗]
where ▷◁ denotes sequence concatenation. The ⌊P(m, j)[ℓ⃗]⌋ operation is well defined from
the induction hypothesis that all such sequences converge in finite steps. As a result, L has
a finite prefix of values before reaching elements drawn from P(n+1, j)[ℓ⃗]. If we show that
the sequence L converges in a finite number of steps, this will in turn imply that P(n+1, j)[ℓ⃗]
also converges in a finite number of steps. We now show that Li>0 = Li−1▽̂Wi and L0 = W0,
whereWi is an increasing sequence. From the definition of widening operators, this sequence
will converge and thus, as argued above, will prove convergence of the sequence P(n+1, j)[ℓ⃗].
From the definition of L it is immediate that:

∀i .Li ≡ P(m,k)[ℓ⃗] = U k
▽ (înj (M

m
▽))[ℓ⃗] (for somem ≤ n + 1 and k ≥ 1) (22)

∀i,k > 0,m ≤ n + 1.Li+1 ≡ U k+1
▽ (înj (Mm

▽))[ℓ⃗]⇒ Li ≡ U k
▽ (înj (M

m
▽))[ℓ⃗] (23)

We will now show that for all i > 0, Li>0 is defined as P(m,k)[ℓ⃗] for somem ≤ n + 1 and
k ≥ 1, and further that Li = Li−1▽̂F̂ (P(m,k−1))[ℓ⃗].
Consider an arbitrary i > 0. Then Li = U k

▽ (înj (M
m
▽))[ℓ⃗],m ≤ n+1,k > 0 by Eq. (22). Suppose

k , 1. Then k = j + 1, and
U j+1
▽ (înj (Mm

▽))[ℓ⃗] = U j
▽ (înj (M

m
▽))[ℓ⃗]▽F̂ (U j

▽ (înj (M
m
▽))[ℓ⃗] = Li−1▽̂F̂ (P(m,k−1))[ℓ⃗]

where the final equality holds from the definition of P and (23) above.
Next, suppose that k = 1. Then

U▽ (înj (M
m
▽))[ℓ⃗] = înj (Mm

▽)[ℓ⃗]▽̂F̂ (înj (Mm
▽))[ℓ⃗] = Mm

▽ [ℓ⃗]▽̂F̂ (înj (Mm
▽))[ℓ⃗] = Mm

▽ [ℓ⃗]▽̂F̂ (P(m,k−1))[ℓ⃗]
We must show thatMm

▽ [ℓ⃗] = Li−1. First, observe thatm cannot be 0 by our assumption that
i > 0.
As i > 0, there must be some preceding element Li−1 and by definition this element is the
final element of ⌊P(m−1, j)⌋. (This follows from the fact thatP(m,1)[ℓ⃗]must be the first element
of one of the sequences that are concatenated together to form L.)
From the definition of ⌊S⌋, this final element is P(m−1,p)[ℓ⃗], where p is the first index greater
than or equal to 1 after which the sequence P(m−1, j)[ℓ⃗] repeats infinitely. Further, as the
sequence P(m−1, j) is increasing by the induction hypothesis, we have:

M
m
▽ [ℓ⃗] =

⊔
i<ω

P(m−1,i)[ℓ⃗] = P(m−1,p)[ℓ⃗] = Li−1

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

Concerto: A Framework for Combined Concrete and Abstract Interpretation 43:49

Finally, by expanding definitions we have:
L0 = P(0,1)[ℓ⃗] = F̂▽ (înj (M

0
▽))[ℓ⃗] = înj (⊥R)[ℓ⃗]▽̂F̂ (înj (M

0
▽))[ℓ⃗]

= F̂ (U 0
▽ (înj (M

0
▽)))[ℓ⃗] = F̂ (P(0,0))[ℓ⃗]

We therefore define the sequenceWi as:
W0 = L0 = F̂ (P(0,0))[ℓ⃗]

Wi+1 = F̂ (P(m,k−1))[ℓ⃗] where Li+1 ≡ P(m,k)

It remains to show that this is an increasing sequence. From the definition of L, if Wi ≡

F̂ (P(m,k−1))[ℓ⃗] for somem ≤ n+ 1 and k , thenWi+1 = F̂ (P(m,k))[ℓ⃗] orWi+1 = F̂ (P(m+1,1))[ℓ⃗].
By the monotonicity of F̂ , it suffices to show that P(m,k−1) ⊑ P(m,k) and that P(m,k−1) ⊑

P(m+1,1) . For the former, ifm < n+1 the result holds from the induction hypothesis, otherwise
ifm = n+1 the result holds from Lemma 30 part (4). The latter is only possible ifm < n+1. By
Lemma 30 part (1),P(m,k−1) ⊑ P(m+1,0) for anym. It remains to show thatP(m+1,0) ⊑ P(m+1,1) .
This holds by either the induction hypothesis (m < n) or Lemma 30 part (4) (m = n).

□

We next show that all iterations in the mostly-concrete interpreter converge in finite time.

Lemma 31.
(1) ∀m : R̃.T▽ (m)i (⊥) is increasing.
(2) ∀m : R̃.T▽ (m)i (⊥) converges.

Proof.
(1) By induction on i . The in the inductive step, for flow edges inWF the inequality is due to

the ▽̃ being an upper bound operator, whereas for flow edges not inWF the result holds
from the monotonicity of I⊤ and the IH.

(2) As in Theorem 13, we consider an arbitrary widening point ℓ⃗. Then the values computed at
each step during subfixpoint iteration, T▽ (m)i (⊥R̃)[ℓ⃗] form the following sequence:

T▽ (m)0 (⊥R̃)[ℓ⃗] = ⊥S̃
T▽ (m)i+1 (⊥R̃)[ℓ⃗] = T▽ (m)i (⊥R̃)[ℓ⃗]▽̃I⊤ (T▽ (m)i (⊥R̃))[ℓ⃗]

The sequence ⊥S̃ , I⊤ (⊥R̃)[ℓ⃗], . . . , I⊤ (T▽ (m)i (⊥R̃))[ℓ⃗] is increasing from the monotonicity of
I⊤ and that T▽ (m)i (⊥R̃) is increasing proved in part (1) above. Thus the above sequence
converges after a finite number of steps, giving us the termination result.

□

Lemma 32. The sequenceMi
▽ |LA converges in a finite number of steps

Proof. By Theorem 13, as each subfixpoint iteration is finite, we can construct a sequence
similar to L in the proof Theorem 13. Using similar reasoning, we show that this sequence stabilizes
in a finite number of steps. This implies that there is some index k , such that when computing
Mm

▽ |LA ,m ≥ k , the values at all widening points inWA will converge to the same values. This
implies that after a k steps, the sequenceMk

▽ |LA stabilizes. □

Theorem 14. The sequenceMi
▽ converges in a finite number of steps.

Proof. Wefirst note that, as I▽⊤ is deterministic, ifm |LA =m′ |LA then
⊔

i<ω T▽ (ĩnj (m)⇂| LA)
i (⊥) =⊔

i<ω T▽ (ĩnj (m
′)⇂| LA)

i (⊥) By Lemma 32, there is some k such thatMk
▽ |LA = M

k+1
▽ |LA = M

k+2
▽ |LA .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

43:50 John Toman and Dan Grossman

AsMk
▽ |LA = M

k+1
▽ |LA we have that⊔

i<ω

T▽ (ĩnj (M
k
▽)⇂| LA)

i (⊥) =
⊔
i<ω

T▽ (ĩnj (M
k+1
▽)⇂| LA)

i (⊥)

Consider next some arbitrary ℓ⃗ ∈ LF . Let Uk+1 =
⊔

i<ω T▽ (ĩnj (M
k
▽)⇂| LA)

i (⊥)[ℓ⃗] and Uk+2 =⊔
i<ω T▽ (ĩnj (M

k+1
▽)⇂| LA)

i (⊥)[ℓ⃗]. By the above equality, we have thatUk+1 = Uk+2, and thus:
M

k+1
▽ [ℓ⃗] = Mk

▽[ℓ⃗] ⊔Uk+1 = M
k
▽[ℓ⃗] ⊔Uk+1 ⊔Uk+1 =

(Mk
▽[ℓ⃗] ⊔Uk+1) ⊔Uk+2 = M

k+1
▽ [ℓ⃗] ⊔Uk+2 = M

k+2
▽ [ℓ⃗]

We therefore have Mk+1
▽ |LA = M

k+2
▽ |LA and Mk+1

▽ |LF = M
k+2
▽ |LF , whence Mk+1

▽ = Mk+2
▽ =

M▽ (M
k+1
▽). Thus, in k+1 steps, the sequence reaches a fixpoint ofM▽, and thus the entire sequence

stabilizes in finite time. □

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 43. Publication date: January 2019.

	Abstract
	1 Introduction
	2 Overview
	2.1 Analyzing the Example
	2.2 Paper Outline

	3 Preliminary Definitions
	3.1 Language Definition
	3.2 Concrete Properties
	3.3 Abstract Properties

	4 Combined Interpretation
	4.1 Naïve Combination
	4.2 Mostly-Concrete Interpretation
	4.3 Combined Abstract and Mostly-Concrete Interpretation
	4.4 Conditions for Increased Precision

	5 Procedures
	5.1 Interprocedural Semantics
	5.2 Interprocedural Domain Transformers

	6 Iteration Strategy
	7 Widening and Finitization
	8 Extensions for a Realistic Prototype
	8.1 Objects and the Heap
	8.2 Methods and Domain Transformers
	8.3 Context-Sensitivity and Mostly-Concrete Interpretation
	8.4 Allowing State Separation Violations

	9 Evaluation
	10 Related Work
	11 Conclusions and Future Work
	Acknowledgments
	References
	A Proofs for Section 4
	A.1 Soundness of I
	A.2 Soundness of Combined Interpretation
	A.3 Increased Precision

	B Proofs For Section 5
	C Formalisms and Proofs for Subfixpoint Iteration
	C.1 Technical Lemmas
	C.2 C M
	C.3 M C
	C.4 Proof of t:fixpoint-eq
	C.5 Fixpoints in the Abstract Interpreter

	D Formalisms, Soundness, and Termination of Widening Iteration
	D.1 Soundness
	D.2 Termination

