
CRUST: A Bounded Verifier for Rust

John Toman, Stuart Pernsteiner, and Emina Torlak
Department of Computer Science and Engineering

University of Washington, Seattle, Washington
{jtoman,spernste,emina}@cs.washington.edu

Abstract—Rust is a modern systems language that provides
guaranteed memory safety through static analysis. However, Rust
includes an escape hatch in the form of “unsafe code,” which the
compiler assumes to be memory safe and to preserve crucial
pointer aliasing invariants. Unsafe code appears in many data
structure implementations and other essential libraries, and bugs
in this code can lead to memory safety violations in parts of the
program that the compiler otherwise proved safe.

We present CRUST, a tool combining exhaustive test genera-
tion and bounded model checking to detect memory safety errors,
as well as violations of Rust’s pointer aliasing invariants within
unsafe library code. CRUST requires no programmer annotations,
only an indication of the modules to check. We evaluate CRUST
on data structures from the Rust standard library. It detects
memory safety bugs that arose during the library’s development
and remained undetected for several months.

Keywords—SMT-based verification, test generation, memory
safety

I. INTRODUCTION

While much of today’s application code is written in safe
languages, system software—OS kernels, device drivers, and
web browsers—is still written in unsafe languages such as C
and C++. For these programs, runtime performance is critical,
and using safe languages with managed runtimes is not an
option. The price of using unsafe languages, however, is code
with dangling pointers, buffer overflows, and other memory er-
rors that cause not only crashes but security vulnerabilities [1].

Rust [2] is a new systems programming language that
provides memory safety without relying on a managed runtime.
Instead, it employs an advanced type system that restricts the
use of object references. The Rust compiler ensures that (1)
every reference points to valid, initialized memory, and (2)
every accessible mutable reference has no accessible aliases.
The compiler rejects all programs that cannot be conservatively
proven to satisfy these safety properties.

Rust’s restrictions on references are sufficient to guarantee
memory safety [3], while also being sufficiently liberal to
admit most real-world application code. They are, however,
too strict to admit some critical low-level libraries, particularly
code that implements (mutable, variable-sized) data structures
such as vectors, hash maps, and linked lists. In Rust, these
data structures are implemented using an escape hatch, special
unsafe blocks that the compiler does not analyze for memory
safety. These unsafe blocks are the only potential source of
memory errors in otherwise safe Rust programs.

This paper introduces CRUST, a bounded verifier for Rust
that aims to bridge the memory safety gap created by unsafe
library code. CRUST works fully automatically, requiring no

manual annotations, assertions, or test drivers. It takes as
input a module to be analyzed and a simple filter indicating
the functions of interest within that module, and verifies the
memory safety of every function under test that contains unsafe
code, on all inputs that can be constructed using a bounded
number of calls. The result is either a bounded safety guarantee
or a concrete program and input that leads to a memory error
or a violation of an aliasing invariant.

CRUST works by a novel combination of test sequence
generation and SMT-based bounded verification. Test sequence
generation is used to construct drivers—sequences of function
calls from the target module. CRUST automatically inserts
assertions into each driver to check for Rust memory safety
violations, then translates the drivers to finitized C programs.
The resulting C programs are verified with the CBMC [4]
bounded model checker, which works by reduction to SMT.
CRUST’s analysis is embarrassingly parallel and exhaustively
checks complex libraries in a few hours of CPU time.

We evaluated CRUST on three modules from the Rust
standard library. The Rust library benchmarks include older
versions of data structure implementations with known (now
patched) memory safety violations, which CRUST found in 8
hours of CPU time. These bugs originally took 1–3 months of
use to emerge in practice. CRUST was able to show that these
modules are free of memory safety errors for inputs produced
by call sequences of length up to 3.

In summary, this paper makes the following contributions:

• A technique for combining test sequence generation
and SMT-based bounded verification to check memory
safety of systems code. Our technique employs a
new algorithm for generating bounded sequences of
API calls and a new translation from Rust to C that
produces code amenable to automated analysis with
CBMC.

• Implementation of our technique in CRUST, a bounded
verifier for Rust that scales to real Rust libraries and
runs on unmodified Rust code.

• Evaluation of CRUST on three modules from the
Rust standard library, showing that it can easily find
memory safety violations that took months to discover
in practice.

The rest of the paper is organized as follows. Section II
illustrates key features of Rust and CRUST on a small example.
Section III presents our test sequence generation technique and
our translator from Rust to C. Section IV briefly describes
our implementation of CRUST. Section V evaluates CRUST on

1 struct Array<T> {
2 ptr: *mut T,
3 len: uint,
4 }
5 impl<T> Array<T> {
6 fn new(len: uint) -> Array<T> {
7 let ptr = unsafe {
8 alloc::allocate(len * mem::size_of::<T>())
9 };

10 Array {
11 ptr: ptr as *mut T,
12 len: len
13 }
14 }
15 fn get_mut(&self, index: uint) -> &mut T {
16 if index >= self.len { panic!(); }
17 unsafe {
18 let ptr = self.ptr.offset(index);
19 &mut *ptr
20 }
21 }
22 fn fill(&mut self, value: T) {
23 for i in 0 .. self.len {
24 *self.get_mut(i) = value;
25 }
26 }
27 }

Fig. 1: A simple fixed-sized array implementation.

1 let a: Array<u32> = Array::new(10);
2 let r1: &mut u32 = a.get_mut(0);
3 let r2: &mut u32 = a.get_mut(0);
4 assert!(r1 as uint == r2 as uint);

Fig. 2: Client code exploiting a bug in Array::get_mut (Fig-
ure 1) to violate the Rust aliasing invariants.

modules from the Rust standard library. We discuss related
work in Section VI, and Section VII concludes the paper.

II. OVERVIEW

This section demonstrates our approach, using the Array
data structure in Figure 1 as a running example. The type
Array is a heap-allocated array supporting three public oper-
ations: new creates a new array of a given length; get_mut
obtains a mutable reference to an element of the array; and
fill sets every element to a particular value. The Array
destructor and other details are omitted in this overview.

The goal of CRUST is to find memory-safety bugs in a
library if any exist. The Array example does contain such
a bug: the get_mut method wrongly declares its receiver
argument as &self rather than &mut self. This allows
client code, such as that in Figure 2, to obtain multiple mutable
references to the same element, in violation of the aliasing
invariants Rust uses to ensure memory safety. If get_mut
were properly declared, the Rust compiler would reject the
code in Figure 2. CRUST finds the get_mut bug quickly
by exhaustively exploring the space of valid inputs for each
method in the Array API.

Figure 3 shows a high-level overview of our approach.
The user provides a library to test, a library filter to identify

Library
CodeFilters

Driver
Generation

Rust-to-C
Translation

CBMC

Success
Counter-
example

Driver
Code

C Code

Fig. 3: An overview of the CRUST process

1 example_array::*

(a) Library filter, matching all functions in the example_array
module.

1 example_array::Array::new
2 example_array::Array::fill

(b) Construction filter, matching only the new and fill methods.

Fig. 4: Additional inputs to CRUST used to find the get_mut bug
in the code from Figure 1.

the portion of the library to test, and a construction filter to
identify functions that may be useful for constructing inputs.
For each function matching the library filter, CRUST generates
a collection of drivers to test that function, possibly using
functions matching the construction filter to construct input
values of nonprimitive types. CRUST then translates the library
and all generated drivers from Rust to C and invokes CBMC
to check for bugs. The remainder of this section describes the
behavior of each step on the Array example in Figure 1.

A. Driver Generation

CRUST begins by collecting relevant API functions to use
as targets for driver generation. For this, it consults the user-
provided library filter, such as the one in Figure 4a that
matches all functions in the example_array module. In
this example, and for most idiomatic Rust code, the filter is
trivial because each data structure is declared in a separate
module. Any function containing unsafe code whose qualified
name matches the filter is a candidate for testing. Functions
without unsafe code are ignored because their memory safety
follows from the memory safety of the functions they call and
the assumed correctness of Rust’s memory safety analyses.

1 fn crust_test_1() {
2 let result = Array::new(?);
3 }
4
5 fn crust_test_2() {
6 let v1 = Array::new(?);
7 Array::fill(&mut v1, ?);
8 let result = Array::get_mut(&v1, ?);
9 assert!(result as uint != 0);

10 }
11
12 fn crust_test_3() {
13 let v1 = Array::new(?);
14 let result1 = Array::get_mut(&v1, ?);
15 let result2 = Array::get_mut(&v1, ?);
16 assert!(result1 as uint != 0);
17 assert!(result2 as uint != 0);
18 assert!(result1 as uint != result2 as uint);
19 }

Fig. 5: Representative driver functions for the Array type defined
in Figure 1

For the Array example and the library filter from Fig-
ure 4a, CRUST collects two target functions for testing:
Array::new and Array::get_mut. The Array::fill
function matches but is ignored because it has no unsafe code.

After collecting relevant API functions, CRUST generates
a set of drivers to cover the space of valid inputs to each
target function. For inputs of primitive type, CRUST uses
the underlying model checker’s support for nondeterminstic
choice. For all other inputs, CRUST relies on the user-provided
construction filter to identify functions that may be useful for
constructing input values. Concretely, when a function call
requires an argument of nonprimitive type, CRUST generates
sequences of calls to functions matching the construction filter
in order to produce values of that type.

An example construction filter appears in Figure 4b. This
filter provides CRUST with two ways to produce Array values:
it can produce an Array from scratch using Array::new, or
it can transform an existing Array using the mutating function
Array::fill.

The construction filter often identifies a subset of the
functions in the library set, but distinguishing the two is useful
for performance tuning. If the user wishes to reduce the time
spent on testing, they may independently adjust the number
of functions to test (the library set) and the strength of the
guarantee provided for each function (the construction set).

Figure 5 shows three representative driver functions for
the Array example. Each consists of zero or more calls to
construction functions, one or two calls to target functions,
and zero or more assertions to check for violations of Rust’s
reference validity and aliasing invariants. The first driver
checks target function Array::new to ensure that no input
value results in a memory error. The second uses construction
functions Array::new and Array::fill to create an
Array, then checks that calling get_mut on that array
produces a non-null reference. The third makes two calls to
Array::get_mut, and because the resulting references are
mutable, it also checks that the references do not alias. This
aliasing check will expose the bug in get_mut.

1 struct Array Array_new_u32(uintptr_t len) {
2 uint8_t* ptr =
3 alloc_allocate(len * sizeof(uint32_t));
4 struct Array __result = {
5 .ptr = (uint32_t*)ptr,
6 .len = len,
7 };
8 return __result;
9 }

10
11 uint32_t* Array_get_mut(
12 struct Array* self,
13 uintptr_t index) {
14 if (index >= self->len) panic();
15 return self->ptr + index;
16 }
17
18 void crust_test_3() {
19 struct Array v1 = Array_new(nondet_uint());
20 uint32_t* result1 =
21 Array_get_mut(&v1, nondet_uint());
22 uint32_t* result2 =
23 Array_get_mut(&v1, nondet_uint());
24 assert((uintptr_t)result1 != 0);
25 assert((uintptr_t)result2 != 0);
26 assert((uintptr_t)result1 != (uintptr_t)result2);
27 }

Fig. 6: C translation of Array::new and Array::get_mut from
Figure 1 and crust_test_3 from Figure 5. For clarity, this figure
omits syntactic artifacts that arise from the Rust-to-C translation.

Driver generation sometimes produces drivers that are not
valid Rust programs. For example, even with a correctly-
defined get_mut, CRUST still generates crust_test_3,
but the Rust compiler rejects that code because it creates
overlapping mutable references into v1. This occurs because
the driver generation step uses only basic type correctness,
not the full set of analyses used in the Rust compiler, to guide
the generation of drivers. However, this simplification does
not result in false positives because the erroneous drivers are
detected and discarded when CRUST invokes the Rust compiler
as part of the conversion from Rust to C.

B. Code Generation

After generating all necessary drivers for each target func-
tion, CRUST translates both the library and the driver code
from Rust to C. Figure 6 shows part of the translation for
the Array example. In this case, the translation is straightfor-
ward because most Rust features used in Array correspond
directly to features supported by C. To perform this translation,
CRUST first invokes the Rust compiler frontend to produce an
AST and collect semantic information (such as the type of
each expression), and then uses that information to produce
corresponding C code. The Rust compiler also serves to detect
erroneous driver functions so they can be discarded.

C. Checking

After translating the library and the generated drivers to
C, CRUST invokes CBMC, a bounded model checker for C
programs. CBMC checks both built-in memory safety proper-
ties and the assertions inserted by CRUST to detect violations
of Rust’s reference invariants. For each driver, CBMC either

1 fn new() -> List { ... }
2 fn insert(list: &mut List, val: u32) { ... }
3 fn append(dest: &mut List, src: &List) { ... }

(a) API for a simple List data structure. Each function is part of
both the library set and the construction set.

append(? , ?)

(b) Driver generation begins with a sketch of a call to the target
function.

append(&mut ? , & ?)

insert(&mut ? , ?)

new() new()

(c) CRUST recursively fills in holes until the driver is complete and
well typed.

append(&mut ? , & ?)

insert(&mut ? , ?)

new()

(d) CRUST merges identical branches to explore aliasing behavior.

1 fn crust_test_0() {
2 let v = List::new();
3 List::insert(&mut v, __crust::nondet());
4 let result = List::append(&mut v, &v);
5 assert!(. . .);
6 }

(e) Rust code corresponding to the driver graph in part (d).

Fig. 7: Example showing the major steps of driver generation for a
simple List data structure.

reports that no choice of nondeterministic inputs can lead to a
memory safety violation, or it produces a counterexample trace
containing concrete inputs that lead to an error condition.

III. APPROACH

Driver generation in CRUST is type-directed, with a sepa-
rate post-processing step for exposing aliasing behavior. First,
CRUST generates well-typed sequences of calls to invoke every
library function with every combination of values produced by
construction functions, subject to the bound on call sequence
length. Second, CRUST merges identical subexpressions and
call sequences to expose all possible combinations of aliasing
between inputs.

A. Call Sequence Generation

Call sequence generation begins by selecting a target func-
tion from the library set. CRUST produces an initial sketch [5],
consisting of a call to the target function with a hole in each
argument position. Figure 7b shows an example. CRUST then
proceeds recursively, filling each hole in the sketch with an
expression of appropriate type, until either no holes remain
or the sketch exceeds the bound on call sequence length
(Figure 7c). During this process, each time CRUST needs to
make a choice, it separately explores the outcomes of all
available options, collecting all resulting drivers into a single
set that includes all possible variations.

CRUST’s method of generating expressions of primitive
and built-in types is straightforward and does not rely on the
provided construction functions. For primitive numeric and
boolean types, CRUST generates an invocation of nondeter-
ministic choice, relying on the underlying model checker to
consider all possible values. For reference types (&T and &mut
T), CRUST generates an application of the appropriate address-
of operator to a hole of the referent type (T). For tuple types, it
generates a tuple construction expression of appropriate arity
with a hole in each subexpression position. CRUST could easily
support additional built-in expression types, though we did not
find these necessary for any of the libraries we tested.

For nonprimitive types, CRUST generates a call to a
function from the construction set that has an appropriate
return type. CRUST initially generates a hole for each function
argument, then later fills each hole by recursively applying
the same code generation procedure. The return type of the
function need not be an exact match for the desired expression
type—CRUST will automatically insert primitive expressions,
such as dereferences and tuple element accesses, to extract a
value of the appropriate type from the function’s result.

CRUST’s handling of nonprimitive types allows it to gen-
erate drivers involving multiple values of distinct nonprimitive
types. For example, a driver call a data structure constructor,
then call a method on the data structure to obtain an iterator, in
order to test a method of the iterator. This is important because
many iterators use unsafe code to traverse the underlying data
structure, but iterators themselves often cannot be constructed
directly without an existing data structure.

For many complex data types, including most containers,
the only method that returns a value of the type is the
constructor, which typically returns an empty or otherwise
trivial instance. Obtaining a more complex instance requires
applying mutating functions such as the insert method
of a container, to update the data structure in-place. Thus,
CRUST includes these mutating functions when generating
code to produce values of nonprimitive types. Specifically,
when generating code to produce a value of type T, CRUST
generates a call to a function that produces T, then additionally
generates zero or more calls to functions that accept &mut T,
passing a reference to the T value so that it can be mutated
before use.

Due to the design of the Rust language, CRUST has no need
to generate code that uses arithmetic, comparison, bitwise, or
array indexing operators. For values of primitive type, these
operators are unnecessary because nondeterministic choice
already covers the entire space of possible values. For more

complex types, the operators are implemented via operator
overloading, by defining a specially named method for the
type. CRUST can thus cover all behaviors of these operators
by invoking the overload method directly, using its existing
support for generating function calls. However, this does mean
that the expression x + y should be considered a function call
for purposes of the call sequence bound.

B. Aliasing

The driver generation algorithm described so far explores
each distinct value for each function argument, but does
not explore the full range of aliasing relationships between
arguments. To explore combinations of aliasing behavior,
CRUST applies a postprocessing step to each generated driver.
This step generates additional drivers by merging identical
subexpressions, so that the result of a single evaluation of the
subexpression is used in multiple locations (Figure 7d). For
example, starting from f(g(), g()), CRUST will generate
an additional driver let x = g(); f(x, x). When the
merged subexpressions have reference types, the resulting
driver now uses aliased references where the original used
distinct ones. Merging subexpressions may expose aliasing
behavior even for subexpressions of non-reference types, as
structures often contain references or raw pointers. In partic-
ular, data structure iterators typically contain a pointer to the
current element, and merging iterator subexpressions results in
a pair of iterators pointing to the same element of the same
data structure.

C. Code Generation

After generating drivers, CRUST translates both the library
and the generated driver functions from Rust to C (Figure 7e).
To carry out this translation, CRUST invokes the Rust compiler
frontend to parse the code and perform type inference and
name resolution, then passes the data to a custom compiler
backend that emits C code. This translation is feasible be-
cause Rust and C operate at similar levels of abstraction,
and most high-level Rust features admit a straightforward
implementation in terms of lower-level C code. The remainder
of this section discusses the more challenging aspects of the
translation.

Lifting: Rust, inspired by functional programming lan-
guages, allows control flow structures such as conditionals,
pattern matching, and loops to appear within any expression.
C, in contrast, allows these structures to appear only in state-
ment positions. CRUST recursively transforms the AST, lifting
control flow structures to statement positions, introducing
temporaries where necessary to store the resulting values.

Error Handling: In Rust, precondition violations such
as accessing an out-of-bounds index of an array may lead to
a panic, which is similar to an exception. However, Rust does
not support any mechanism for user code to catch a panic
and continue executing—once a panic occurs, the runtime
unwinds the entire stack and terminates the program. No
further memory safety violations can occur after the program
terminates, so if a program reaches a panic without violating
memory safety, CRUST reports no error for that program and
input.

TABLE I: Modules and parameters used for evaluating CRUST.

Module LOC Driver bound Filter lines
Vector 1,015 3 4
Slice 1,244 2 4
Ringbuf 1,030 3 4

IV. IMPLEMENTATION

We implemented CRUST as two distinct components. First,
a modified rustc compiler driver runs the standard parser
and frontend passes, followed by a custom backend that emits
a high-level intermediate representation. Then, a collection of
external tools analyzes and processes the IR, generating driver
code or performing translation to C. The rustc integration
consists of 1,934 lines of code (based on a snapshot of rustc
taken on April 1, 2015), and the IR processing tools are 3,508
lines of Haskell and 4,380 lines of OCaml. For verification,
we used CBMC [4] version 4.9 with the Minisat backend.

Our implementation supports a large subset of Rust fea-
tures, but it currently lacks support for dynamic dispatch of
trait methods and for closures. Code using these features
internally cannot be invoked from any CRUST-generated driver.
Extending CRUST’s Rust-to-C translation to support these
features remains as future work.

V. EVALUATION

We evaluated CRUST’s ability to detect real memory safety
errors by using it to check the vector (Vec), slice (denoted
&[T]), and ring buffer (VecDeque) data structures from
the Rust standard library. The vector type is a growable,
heap-allocated array. The slice type is a view into an array,
commonly used to manipulate vectors and other array-based
data structures. The ring buffer type is a dynamically-resizable
heap-allocated ring buffer. The vector and slice types are
essential data structures used by nearly all Rust programs.

For testing, we examined the change history of the Rust
standard library and found two memory safety bugs, one in the
vector module and one in the slice module. We reintroduced
each bug into the modern Rust standard library and ran CRUST
on the faulty versions to confirm that it detects the bugs. We
also ran CRUST on the unmodified Rust standard library, which
has been thoroughly tested and has no known memory safety
bugs, to confirm that CRUST does not report false positives.

Table I shows the parameters we used for the evaluation.
We wrote a short filter (fewer than five lines) for each module,
specifying the entire module as the library set and a small
number of selected functions as the construction set. We used
the same filter for both the unmodified and faulty versions of
each module—in particular, we did not tune the filter for the
faulty versions to guide the search toward the known bug.

We set a smaller driver bound when testing the slice module
because the unique characteristics of the slice API result in a
large number of drivers for a given bound. Specifically, the
slice library contains an unusually large number of unsafe
blocks, and because Rust considers slices to be a special
kind of reference, CRUST must check all pairs of functions
(quadratic in the size of the library) for aliasing violations.

TABLE II: Results of evaluating CRUST on Rust standard library
components.

Module Has
bug?

Drivers
generated

Gen.
time

Checking
time

Errors
found

Vector N 138 2.0m 3.1m 0
Vector Y 174 2.0m 4.0m 64
Slice N 9,722 14.5m 446.3m 0
Slice Y 9,740 14.4m 448.4m 9
Ringbuf N 2,150 10.6m 121.2m 0

Results: The results of the evaluation are summarized
in Table II. Running times are reported in CPU-minutes. In
each case, CRUST produced the expected results: no errors
on the unmodified library, and multiple errors on each faulty
version (due to multiple drivers triggering the single bug).

For the vector library, CRUST requires fewer than 200
drivers to cover the input space of all unsafe vector func-
tions. The vector type supports only two reference-producing
functions that contain unsafe code, along with many other
methods implemented by calling one of the two functions
and performing safe operations on the result. Only the two
reference-producing functions require testing by CRUST, and
CBMC checking for the resulting drivers took only 4 minutes
of CPU time. As each CBMC invocation is independent, the
checking phase is embarrassingly parallel. The machine we
used for testing (a quad-core Intel Core i7 CPU with 16GB of
RAM) supports 8-way parallelism, so the CBMC invocations
took only 30 seconds of wall-clock time.

The slice library requires several thousand drivers, for
the reasons described previously. But once again, the parallel
nature of the checking process allows for speedups: on our test
machine, checking all slice drivers took less than an hour of
wall-clock time.

Finally, the ring buffer library produces roughly 2,000
drivers, and spends 2 CPU-hours checking them. These results
are the most representative out of the three modules we
tested. The ring buffer type does not include a disproportionate
number of reference-producing functions, nor does it dispatch
its unsafe indexing operations to a separate module.

Omitted from the table is the time spent preprocessing each
library version to prepare it for testing with CRUST. This step,
which took about 3 minutes for our benchmarks, is a one-time
cost for each library version to be tested. The results can be
reused with a variety of filters and bounds to test multiple
portions of the library.

VI. RELATED WORK

CRUST fundamentally relies on the use of a lower-level pro-
gram analysis tool to explore the space of all primitive-typed
inputs. For our implementation, we chose to use CBMC [4], a
robust bounded model checking tool for C programs. Other
bounded model checkers that can operate on C, such as
LLBMC [6], may also be suitable as a backend for CRUST.

CRUST’s strategy of generating many drivers to cover the
space of possible inputs is similar to techniques for test case
generation, which form the basis of tools such as Randoop [7].
A key difference is that CRUST generates sufficient drivers
to cover the entire input space of each function under test,

subject to a bound on driver size, allowing it to provide a
strong guarantee akin to that of bounded model checking. In
situations where the provided guarantee need not be as strict, a
Randoop-like strategy may be useful to improve performance.

Several previous tools use a similar approach to CRUST,
combining test generation with bounded verification. For ex-
ample, Symstra [8] uses symbolic execution both to generate
call sequences that explore the input space for object-oriented
data structures and to explore all possible combinations of
primitive-typed input values for each call sequence. JPF [9]
and Evacon [10] similarly combine different forms of test gen-
eration to generate non-primitive inputs with model checking
or concolic testing to handle the primitive inputs. Compared
to these techniques, CRUST produces not only sequences of
method calls on a single object, but also drivers that create and
manipulate values of Rust’s nonprimitive built-in data types
and operate on multiple values of different user-defined types.
This flexibility allows CRUST to analyze more complex APIs,
particularly those involving “helper types” such as the iterator
types associated with a data structure.

VII. CONCLUSION

We have presented CRUST, a tool for detecting mem-
ory safety errors and aliasing invariant violations in unsafe
Rust code. CRUST uses a combination of test generation and
bounded model checking, allowing it to efficiently conduct
exhaustive exploration of large input spaces. CRUST’s test
generation strategy is type-directed and uses several conser-
vative heuristics to avoid generating redundant test harnesses.
We have demonstrated CRUST’s effectiveness by testing it on
portions of the Rust standard library. CRUST easily detects
memory safety bugs, even those involving complex interactions
between multiple library components, with no programmer
annotations.

REFERENCES

[1] E. D. Berger and B. G. Zorn, “Diehard: Probabilistic memory safety
for unsafe languages,” in PLDI, 2006.

[2] The Rust Project Developers, “The Rust programming language,”
2015. [Online]. Available: http://www.rust-lang.org

[3] E. Reed, “Patina: A formalization of the Rust programming language,”
University of Washington, Department of Computer Science and Engi-
neering, Tech. Rep. UW-CSE-15-03-02, March 2015.

[4] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in TACAS, 2004.

[5] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat,
“Combinatorial sketching for finite programs,” in ASPLOS, 2006.

[6] F. Merz, S. Falke, and C. Sinz, “LLBMC: bounded model checking of
C and C++ programs using a compiler IR,” in VSTTE, 2012.

[7] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball, “Feedback-directed random
test generation,” in ICSE, 2007.

[8] T. Xie, D. Marinov, W. Schulte, and D. Notkin, “Symstra: A framework
for generating object-oriented unit tests using symbolic execution,” in
TACAS, 2005.

[9] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape, “Combining unit-level symbolic
execution and system-level concrete execution for testing NASA soft-
ware,” in ISSTA, 2008.

[10] K. Inkumsah and T. Xie, “Evacon: A framework for integrating evo-
lutionary and concolic testing for object-oriented programs,” in ASE,
2007.

