
The Ruby Type Checker

Brianna M. Ren John Toman T. Stephen Strickland Jeffrey S. Foster

Department of Computer Science

University of Maryland, College Park

{bren, jtoman, sstrickl, jfoster}@cs.umd.edu

ABSTRACT
We present the Ruby Type Checker (rtc), a tool that adds
type checking to Ruby, an object-oriented, dynamic script-
ing language. Rtc is implemented as a Ruby library in which
all type checking occurs at run time; thus it checks types
later than a purely static system, but earlier than a tradi-
tional dynamic type system. Rtc supports type annotations
on classes, methods, and objects and rtc provides a rich type
language that includes union and intersection types, higher-
order (block) types, and parametric polymorphism among
other features. Rtc is designed so programmers can control
exactly where type checking occurs: type-annotated objects
serve as the “roots” of the type checking process, and unan-
notated objects are not type checked. We have applied rtc to
several programs and found it to be easy to use and e↵ective
at checking types.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.3.3 [Programming Languages]: Language Con-
structs and Features

General Terms
Design, Reliability, Verification

Keywords
run-time type systems, gradual typing, object-oriented type
systems, Ruby

1. INTRODUCTION
Dynamic typing is a popular feature of many dynamic

languages, in part because it meshes well with the goals of
supporting rapid prototyping and providing a high degree of
flexibility and agility to the programmer. However, dynamic
typing has a major drawback: type errors can remain latent
long into the software development process or even into de-
ployment. To address this concern, there have been many

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SAC’13 March 18-22, 2013, Coimbra, Portugal.

Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$15.00.

proposals for adding static types to dynamic languages [9,
15, 5, 11, 3, 4, 14]. However, while these prior systems are
promising, they have two key limitations. First, because
they are purely static, they do not deal well with highly dy-
namic language features such as eval or reflective method
invocation. Second, since static type systems must be con-
servative, in practice they can categorize too many programs
as erroneous. Adding precision in the form of flow-, path-,
and context-sensitivity helps, but also tremendously compli-
cates the type system.

In this paper, we introduce rtc, the Ruby Type Checker,
which sits at an intermediate point between pure static and
pure dynamic checking. In rtc, types are checked at run-
time—which is later than static typing—but at method en-
trance and exit—which is earlier than dynamic typing. Be-
cause rtc operates at run time, it can handle highly dynamic
language features in a natural way. Moreover, as rtc only ob-
serves feasible program executions, it automatically includes
the sensitivities mentioned above. Rtc is heavily inspired
by and builds on the codebase of An et al’s Rubydust sys-
tem [1], which falls at the same design point. However, rtc
is a pure type checking system, whereas Rubydust performs
constraint-based type inference. As we discuss in various
places in the paper and summarize in Section 5, this results
in several key technical and implementation di↵erences.

Rtc supports annotations on classes, methods, and ob-
jects, and rtc’s type system includes nominal types, union
and intersection types, block (higher-order method) types,
parametric polymorphism, and type casts. A key design
principle of rtc is that programmers should only “pay for
what they use.” That is, programs without annotations
should run as usual, and programs with annotations should
only perform checking where desired. To achieve this, rtc
separates objects into raw (untyped) values and annotated
(typed) values. Type checking only occurs when annotated
values are used as receivers. Annotations are introduced ei-
ther explicitly by the programmer or implicitly when values
are passed as arguments to type-checked calls. We think
this design strikes the right balance of providing fine enough
control over type checking without requiring too much ex-
plicit annotation. (Section 2 explains the usage of rtc in
more detail.)

Rtc is implemented in a similar fashion to Rubydust. An-
notated objects are wrapped by proxy objects that associate
types with the underlying object. When a proxy is invoked,
it performs type checking before and after it delegates the
method call to the underlying object. The proxy also anno-
tates the incoming arguments and the returned value. Rtc

1565

uses some implementation tricks to maintain annotations on
self , which would otherwise be lost when the proxy delegates
to the underlying object; to handle block type checking; and
to allow classes to be declared as auto-annotating, so that
all instances of the class are proxied by default. (Section 3
discusses the implementation more fully.)

We evaluated rtc by adding type annotations to several
small programs and running the test suites included with
those programs. We found that all of the features of rtc
were useful in typing our subject programs, and we were
able to assign rtc types to most methods. We also found that
while the overhead of rtc is substantial in relative terms, in
absolute terms the test suites for our subject programs still
execute quickly. (Section 4 presents our evaluation.)

In summary, we think that rtc is a practical, useful, and ef-
fective tool for increasing the type safety of Ruby programs,
and that the ideas of rtc can be ported to other languages.

2. USING RTC
Figure 1 illustrates the basic use of rtc with excerpts from

a payroll program with three classes: Person, the base class
for describing employees of the company; Manager, a subclass
of Person that includes extra information for managers; and
Payroll , a class for modifying the company’s payroll.
The program begins by calling require to load the rtc lib

library, which contains rtc’s implementation. Next are the
class definitions for Person, Manager, and Payroll . All three
definitions start with a call to rtc annotated, which makes an-
notation methods, such as typesig, available locally. The pro-
grammer declares types for methods by calling typesig with
a string that contains the method name and its type. Anno-
tating a method with typesig tells rtc to intercept calls to the
method to perform typechecking (more on this in Section 3).
For example, personnel id (line 6) is an instance method that
takes no arguments and returns the employee’s id number
as a Fixnum.1 Class method from id (line 9) takes an id num-
ber and returns the appropriate instance of Person. Finally,
the manager instance method returns either the Manager of
the employee or false if the employee has no manager; note
the use of a union type on line 12 to denote these possibil-
ities. Here, %false is shorthand for the class FalseClass , of
which the value false is the only inhabitant. This and other
type aliases like %true, %bool, and %any are used to make
types both clear and concise. Rtc allows programmers to de-
fine type aliases with typesig ”type %type name=t”, where t is
some valid rtc type. After the above call %type name may be
used within the defining class wherever a type is expected.

Class Manager includes a method employees that returns an
array of employees managed by the receiver. Notice that we
provide the type annotation for employees on line 22 after
its definition. We use this ability to add types to the Ruby
core library without modifying its code—instead we simply
reopen the core library classes as allowed by Ruby and add
appropriate typesig calls. Although we do not show it here,
rtc annotated can also appear late in a class definition, but it
must occur before any other rtc forms like typesig are used.
Often in Ruby, methods are called in several di↵erent

ways. One such example is Payroll#give raise

2 on line 30.
The first two arguments to the method are the employee re-

1Fixnum is the Ruby type for fixed-size integers.
2Following the convention in Ruby documentation, the no-
tation C#m refers to class C’s instance method m.

1 require ’ rtc lib ’
2
3 class Person
4 rtc annotated

5 ...
6 typesig ”personnel id : () ! Fixnum”
7 def personnel id ... end

8
9 typesig ”self . from id : (Fixnum) !Person”

10 def self . from id(id) ... end

11
12 typesig ”manager: () ! Manager or %false”
13 def manager ... end

14 end

15
16 class Manager < Person
17 rtc annotated

18 def employees
19 # ... find all managed employees in the database
20 end

21 ...
22 typesig(”employees: () ! Array<Person>”)
23 end

24
25 class Payroll
26 rtc annotated

27 ...
28 typesig ”self . give raise :(Fixnum,Fixnum,Fixnum)!Fixnum”
29 typesig ”self . give raise :(Person,Manager,Fixnum)!Fixnum”
30 def self . give raise (emp, okayed by, incr)
31 ... # ensure okayed by is in charge of emp
32 curr = fetch salary from database (emp)
33 set salary (emp, curr + incr)
34 end

35 end

36
37 ids 1 = [1141,1231,3142] # raw, untyped value
38 ids 1 .push ”foo” # allowed for raw value
39 ids 2 = [1141,1231,3142]. rtc annotate (”Array<Fixnum>”)
40 ids 2 .push ”foo” # type error
41
42 # Assuming employee number 1141 is a Manager
43 m = Person.from id(1141)
44 m.employees # type error
45 m 1 = m.rtc annotate ”Manager”# type error
46 m 2 = m.rtc cast ”Manager”# ok
47 m 2.employees # ok
48
49 sm = m.manager # sm: Manager or %false
50 unless sm
51 ssm 1 = sm.manager # type error
52 ssm 2 = sm.rtc cast(”Manager”).employees # ok
53 end

Figure 1: Basic usage of rtc

ceiving the raise and the manager that signs o↵ on the raise.
Either id numbers or objects are allowed in both positions;
however, callers may not mix the two in a given call. Thus
we use an intersection type: we write multiple annotations
for the same method (lines 28–29), and the resulting method
type is the intersection of all such annotations. When the
method is called, the arguments are checked to ensure they
conform to one of the allowed patterns.

In rtc, type checking happens eagerly when a method is
called, which may detect errors earlier than standard dy-
namic typing. For example, suppose our program passes
a type-incorrect final argument to give raise . In standard
Ruby, we would need to wait until the program reaches

1566

line 33 to see the error—but this may take a relatively long
time if the preceding database operation is slow. In contrast,
rtc detects and reports the type error on entry to give raise .
In our experience with writing Ruby programs, we are often
frustrated with exactly this problem: while programs can be
quick to write, they often contain small, frustrating mistakes
that manifest late.

One design goal of rtc is allowing programmers to use
types where desired and eschewing type checking elsewhere.
Thus, rtc employs a finer grained strategy than Rubydust [1],
in which developers decide on a per-class basis whether to
use types. In rtc, newly created objects, dubbed raw objects,
are untyped by default, so invoking their instance methods
does not involve type checking. For example, even though
rtc contains type annotations for the Array class, a newly
created array is initially untyped (lines 37–38). There are
two ways to enable type checking for a given value. First,
the programmer can use rtc annotate to create an annotated
version of a value that carries a type (line 39). When an
annotated value is the receiver of a call to a type-annotated
method, rtc performs type checking (line 40). Second, when
any value, raw or annotated, is passed as an argument or re-
turned from a method for which rtc performs type checking,
then rtc checks that the value is consistent with the declared
type. If the value is already typed, then rtc checks that the
current type is a subtype of the desired type, raising a type
error if it is not, and then rewraps the contained value with
the desired type. If the value is not typed, then rtc checks
first-order properties of the value, such as its class, to deter-
mine whether the value is consistent with the desired type.
If it is not, then rtc raises a type error. If it is consistent,
then within the method body rtc annotates the value with
the declared type. For example, when our program calls
Person.from id

3 on line 43, the value 1141 is annotated with
the type Fixnum within the body of Person.from id.

Unlike instance methods, rtc checks every call to anno-
tated class methods, such as the call to Person.from id on
line 43. We choose to have rtc automatically check class
methods to reduce the annotation burden; forcing the pro-
grammer to write C.rtc annotate (...). m to get type-checked
class methods would be a large change to existing programs.

In addition, rtc assumes a subclass is a subtype of its
superclass by default; the programmer can annotate a class
with no subtype if this is not the case. Thus, it is possible
for objects to become annotated with proper supertypes of
their actual, run-time type. For example, on line 43 we
use Person.from id to get employee 1141 on line 43. While
we may know this employee is a manager, Person.from id is
annotated to return a Person. Thus, our program cannot call
the employees method directly on the result (line 44).
One design choice would be to allow rtc annotate to per-

form a downcast. However, since this operation is con-
ceptually di↵erent than an upcast, we prefer to use a dis-
tinct method call. Thus, we restrict rtc annotate (line 45),
and similarly the re-annotation that occurs at method en-
try, to only safe upcasts; and rtc provides rtc cast for cases
where the programmer desires a downcast during reannota-
tion (lines 46–47). The method rtc cast is particularly useful
when working with union types. For example, on line 49 the
variable sm may contain either a Manager or false . Our pro-
gram uses unless to test for falsity, so on lines 51–52 we know

3Class method m of class C is referred to as C.m.

that sm is a Manager. However, since rtc’s implementation
cannot automatically reassign types based on conditions (see
Section 3), we must add an explicit use of rtc cast to reflect
this knowledge in the program.

Next, we discuss some of the key features of rtc, particu-
larly places where type checking di↵ers from inference sig-
nificantly, or features that are lacking in Rubydust.

Blocks and procedures. Ruby supports higher-order pro-
gramming through the use of code blocks, which are anony-
mous methods passed in using a special syntax. Code blocks
are not first-order objects (they can only be called using the
special yield expression), but blocks can be freely converted
to Proc objects, which are first class.

As an example, the String class defines method each char,
which calls its block argument on each character of the re-
ceiver as a string of length 1. Rtc includes the following type
annotation for each char:

54 class String
55 rtc annotated

56 typesig ”each char: () { (String) ! %any } !String ”
57 end

Here, since the return value of the block is not used by
each char, we use the type %any to signify that the block
may return any value.

Blocks types were not supported in Rubydust. Rtc imple-
ments block typing by wrapping block arguments in a Proc
object that does type checking on entry to and exit from the
block; more details are in Section 3.

Parametric Polymorphism. Rtc supports parametric poly-
morphism for classes and methods. For example, here are
some of the annotations already included in rtc on the built-
in Array class:

58 class Array
59 rtc annotated [: t , :each]
60
61 typesig ” ’[]’: (Range) !Array<t>”
62 typesig ” ’[]’: (Fixnum, Fixnum) !Array<t>”
63 typesig ” ’[]’: (Fixnum) ! t”
64
65 typesig ”map<u>: () {(t) ! u } ! Array<u>”
66 end

On line 59, we call rtc annotated and include a two-element
list argument to indicate the Array class should be param-
eterized by its contents type. The first element of the list,
: t, names the type parameter. The second element, :each,
indicates how to find the contents type of : t for a raw Array.
More specifically, when checking whether a raw array can be
annotated with a type Array<u>, rtc will call the eachmethod
to iterate over all the array elements and check whether they
are compatible with type u. Classes with multiple type pa-
rameters can be specified by passing multiple two-element
list arguments to rtc annotated.
Note that iterating through raw arrays is potentially very

expensive, and so rtc includes a non-strict mode that omits
it (see Section 3 for details). Additionally, in some cases,
classes may have type parameters that are cannot be in-
ferred by iterating over the contents. For these cases, the
programmer can omit the iterator method name when call-

1567

ing rtc annotated; rtc signals a type error if a raw instance of
such a class is passed to a typed position.

Lines 61–63 give the type for one commonly used method,
the array getter [] . Note the type parameter t is in scope
inside the class, so it can be used in these annotations.

Line 65 illustrates method polymorphism with the type for
map. For this method, rtc attempts to infer the instantiation
of u at a method call. For many polymorphic methods we
can infer the right instantiation by examining the arguments
when the method is invoked. For map, however, it is slightly
trickier, as rtc cannot know the return type of the block
until it is called. In this case, rtc assigns u to the type of the
value returned by the first call to the block, or to %none (the
bottom type) if the block is never called. Further returns
from the block are checked using this inferred type, and
when map returns, rtc checks that the returned array is type
Array<u>.
This approach to type inference may not choose the cor-

rect types for instantiation, however. Consider the following
use of Array#map, where the block returns numbers for even
inputs and strings for odd inputs:

67 a = [1,2,3]. rtc annotate (”Array<Fixnum>”)
68 a.map() { |n| if (n % 2 == 0) then n else n.to s end }

In the above example the call will fail because our type
checker infers u to be the type String from the first use of the
block, but the block returns a Fixnum from its second use.
To address this issue, rtc includes a method rtc instantiate
to explicitly instantiate type parameters. In this case, the
instantiation returns a method object of the correct type:

69 m = a. rtc instantiate (:map,:u)”Fixnum or String”)
70 m.call () { |n| if (n % 2 == 0) then n else n.to s end }

Ambiguity in union and intersection types. While union
and intersection types are heavily used in type annotations,
rtc must forbid some uses that are problematic from a type
checking perspective. For example, recall the Person and
Manager classes from figure 1 and consider the following in-
tersection type:

71 typesig ”seat : (Person) ! Cubicle”
72 typesig ”seat : (Manager) !O�ce ”

If we pass in a Manager, both arms of the intersection are
valid since Manager is a subtype of Person. We could choose
various disambiguation rules, but to keep rtc simple and pre-
dictable we opt to report an error when such an ambiguously
typed method is called.

Type variables can also introduce ambiguity. For example:

73 typesig ”m1<t,u>: (t or u) ! Array<t> or Hash<String, u>”
74
75 typesig ”m2<t>: (t) !Array<t>”
76 typesig ”m2<u>: (u) !Hash<String, u>”

The uses of t and u above are ambiguous because they ap-
pear in the same place in a union or intersection type. Thus,
rtc forbids such type annotations by reporting an error when
an ambiguously typed method is called.

Similarly, having a concrete type and a type variable at
the same level causes ambiguity:

77 typesig ”m3<t>: (t or Fixnum) !Array<t>”

If a value of type Fixnum is provided, then we cannot deter-
mine whether type variable t should be assigned Fixnum or
whether we are using the other branch of the union and t
should be some other type. (Here we see that or is regular
union, rather than disjoint union.)

Note that not all uses of type variables create ambiguity:

78 typesig ”m4<t,u>: (Array<t> or Hash<String, u>) !t or u”
79
80 typesig ”m5<t>: (Array<t>) !t”
81 typesig ”m5<u>: (Hash<String, u>) !u”

In these annotations, we can determine the bindings of the
type variables depending on whether the argument is a Array
or Hash. In the case of m4, the type variable in the unused
part of the union gets assigned the empty type %none.

Tuple types. Ruby programmers often use Arrays both ho-
mogeneously for unbounded lists, and heterogeneously for
fixed-size tuples. Like DRuby, rtc includes a special type
Tuple<t1,. . ., tn> representing an array whose ith element
has type ti [9]. Values of type Tuple can be manipulated
using a subset of the Array methods that do not change the
size of the array or the order of array elements. For example,
Array#[] (element access) is allowed, but Array#push is not.
Note that this is di↵erent than DRuby, which performs in-
ference and thus begins by assuming every array literal is a
Tuple and then promotes it to an Array if non-Tuple methods
are used on it.

Instantiating proxy objects automatically. Sometimes a
programmer may want all instances of a given class to be
annotated without having to explicitly call rtc annotate . To
achieve this, the programmer adds a call to rtc autowrap in
an annotated class definition. Classes that are subtypes of
an auto-wrapping class are also auto-wrapping. Currently,
auto-wrapping works only with non-parameterized classes.

3. IMPLEMENTATION
We have implemented rtc as a Ruby library. Rtc adds

rtc annotate , rtc cast , and other key methods to the base
Object and Class classes as appropriate, so they are avail-
able everywhere. When the programmer uses rtc annotate
to add a type to an existing object, rtc wraps the original
object in a proxy that also contains the type. The proxy de-
fines a method missing method, which in Ruby receives a call
when calling an undefined method on the object.4 Calls to
the proxy first ensure the arguments are of the appropriate
type, then delegate to the original object, and finally check
the return value’s type before returning to the callee. The
general idea of proxy wrapping is borrowed from Rubydust,
though rtc does not perform constraint generation [1].

In more depth, consider the code at the top of Figure 2;
the bottom part of the figure shows the objects resulting
from this code. On line 83, we annotate the array from
line 82 with the type Array<Object>. This annotation returns
a new instance of the internal rtc class Proxy that holds both
the underlying object and its type. Similarly, line 85 assigns
a new Proxy to n.

4Since calling methods via method missing is slower than di-
rect dispatch, we explicitly delegate some Object operations
such as ==, class , or nil ? due to their prevalence.

1568

82 a = [1,2,3]
83 b = a.rtc annotate(”Array<Object>”)
84 # equiv. to b = Proxy.new(a, ”Array<Object>”)
85 n = 4.rtc annotate(”Fixnum”)
86 b.push(n)
87 # the array now contains 1, 2, 3, and Proxy(4, ”Object”)
88 m = b[1]
89 # m is bound to the value Proxy(2, ”Object”)

a

1 2 3

b

Array<Object> Object

n Fixnum 4

m Object

Figure 2: Illustration of proxy implementation.

Next consider the call on line 86; the sequence of events
triggered by this call is shown in Figure 3a. When push
is invoked on the proxy object b, Proxy#method missing is
called with two arguments: :push, the name of the method,
and n. Then method missing checks the type of the argument
by retrieving the type of the push method and comparing the
type of the argument against the expected type. Rtc then
rewraps the underlying object in a new Proxy with the formal
argument type and returns the new proxy to method missing.
This ensures that the method must use the value accord-
ing to the method’s type signature (here, Object) instead of
its possibly more specific type (here, Fixnum). Finally, the
rewrapped argument is passed to the underlying array’s push
method, which adds it to the end of the array a.
Next consider line 88, which sets m to b[1] ; Figure 3b

illustrates this call. As before, b’s method missing receives
the call to [] . This time, the argument 1 is a raw value, so
rtc retrieves the value’s class to derive its type. Since there
is only one argument of class Fixnum, rtc infers that this call
uses [] with the type (Fixnum)!Object. The type checking
algorithm then wraps 1 in a Proxy with the type Fixnum before
it is passed to the underlying object’s [] method. Similarly,
the unannotated value 2 in the array is wrapped in a Proxy
with type Object (the inferred return type of []) before it is
returned from the call.

As we have just seen, adding annotations to objects means
that annotations get added to method arguments and re-
sults, even if those values were originally unannotated. Op-
erations on those newly annotated values can add further
annotations. Thus, the user need not annotate all objects
explicitly to get wide type checking coverage, but rather can
annotate just a few key objects to get the ball rolling.

Type checking blocks and procedures. Thanks to Ruby’s
support for higher-order procedures, type checking blocks
and procedures is straightforward. If the value to type check
is a block, rtc first converts it to a procedure, and otherwise
we use the procedure value directly. Next, rtc creates a new
procedure that first checks the arguments, then calls the
original procedure, and finally checks the return value from
that call. This conversion is similar to the conversion per-
formed by Findler and Felleisen [7] to protect higher-order
functions with contracts. If the original value is a procedure,
then rtc uses the new procedure as the new value, and oth-

b type checker a

push(n)

method missing(:push, n)

typecheck(n, Object)

return Proxy(4, Object)

push(Proxy(4, Object))

(a) Sequence diagram for line 86

b type checker a

[1]

method missing (:[], 1)

typecheck(1, Fixnum)

return Proxy(1, Fixnum)

[Proxy(1, Fixnum)]

return 2

typecheck(2, Object)

return Proxy(2, Object)

return Proxy(2, Object)

(b) Sequence diagram for line 88

Figure 3: Illustration of proxy implementation (cont’d).

erwise, rtc then converts the resulting procedure back into
a block before use.

Type checking in method wrappers. As we will explain
shortly, we need to add another layer of interposition to
track proxies on self and to support calls to native meth-
ods. Thus, rtc alters annotated classes to add a method
wrapper layer within annotated classes themselves. To im-
plement this alteration, rtc uses some low-level features of
Ruby to rename methods in the original object to a man-
gled name. It then inserts a new method with the original
name that delegates to the original method. Rtc adds a
method instead of inserting a generic method missing for im-
proved performance. It is in these method wrappers that rtc
performs type checking if a Proxy received the previous call.
In developing this implementation, we discovered one in-

teresting quirk of Ruby. There are two ways to define new
methods: using define method, which takes a Proc object as

1569

an argument, or using eval. We found that methods cre-
ated by the former mechanism are much slower to call than
methods created by the latter. Thus, we use eval to create
new methods although it is less elegant.

Due to this design, calling an annotated method in rtc en-
tails two method interceptions: one in the Proxy and one in
the method wrapper layer. To improve performance in the
method wrapper layer, we directly call the (name-mangled)
original methods of underlying objects that rtc uses inter-
nally in its type checking process.

Tracking proxies on self. When a Proxy finally delegates
to the underlying object’s method, self will be bound to
the underlying object rather than the Proxy. Thus, if that
method in turn invokes other methods on self , without fur-
ther work we will fail to type check those calls, since the
receiver will not be a Proxy.
We solve this problem using the method wrapper layer.

Internally, rtc maintains a stack of Proxys associated with
each object. The method missing of a Proxy pushes self (that
is, the proxy) onto the stack associated with the wrapped
object before delegating and pops the stack after normal or
exceptional exit of the delegated method. When an anno-
tated method is intercepted by the method wrapper layer,
it also checks whether there is a Proxy on the stack. If so, it
performs type checking using the type information contained
in the topmost Proxy. This ensures type checking continues
to occur for calls targeting self in annotated objects.

Handling methods that expect native values. Certain
methods of built-in types—particularly those implemented
in native code—expect their arguments to be objects of an
appropriate class, and passing in Proxys instead causes those
operations to fail. Thus, typesig optionally takes an :unwrap
argument that is an array of argument positions from which
the proxy must be removed before calling the method. For
example, we can annotate the + operation on Fixnum to un-
wrap its argument:

90 typesig ”’+’:(Fixnum)!Fixnum”, :unwrap)[0]

In the method wrapper layer, we remove proxies as specified
by :unwrap before calling the original method.

Handling false and nil . A related problem is that boolean
comparisons and conditional expressions, which cannot be
intercepted in Ruby, treat false and nil as false and all other
values as true. Thus, wrapping false or nil in a proxy would
cause them to be treated as true, yielding incorrect results.
As a result, we do not wrap either these values in proxies
during type checking.

Non-strict mode. As discussed in Section 2, rtc checks that
raw objects have the correct type whenever they are anno-
tated; for container classes like Array, this check involves
iterating over the contents, which can be quite expensive.

Thus, rtc includes a non-strict mode in which this itera-
tion is omitted. That is, in non-strict mode, when raw val-
ues are annotated only the type constructor is checked for
compatibility, but not the type parameters. For example:

91 # non�strict mode
92 [1,2,3]. rtc annotate (”Fixnum”) # error
93 [1,2,3]. rtc annotate (‘‘ Array<String>’’) # ok

While non-strict mode does not catch errors as soon as
possible, errors are caught on uses of the contained values.
For example, consider the following code:

94 # non�strict mode
95 class Statistics
96 rtc annotated

97 typesig ”sum: (Array<Fixnum>) !Fixnum”
98 def sum(input)
99 total = 0

100 input .each { |elem|
101 total += elem
102 }
103 total
104 end

105 end

106 Statistics .new.rtc annotate(” Statistics ”). sum([”1”, ”2”, ”3”])

In non-strict mode, the argument to sum is accepted al-
though the contents do not match the expected type. How-
ever, rtc deduces from its annotation that the block argu-
ment to each accepts type Fixnum. When the first element
of the array, of type String , is passed to the block, the block
wrapper checks it against type Fixnum and reports an error.

In Section 4, we compare the performance of strict and
non-strict modes. As the latter is significantly faster that
than former, non-strict mode is enabled by default. How-
ever, the programmer may opt-in to stricter type checking
by setting the global variable $RTC STRICT to true.

4. EVALUATION
We performed an initial evaluation of rtc on a set of Ruby

programs and libraries that we retrofitted with rtc types.
Figure 4 summarizes the results. The subject programs are
as follows:

• Sudoku: an implementation of Norvig’s algorithm for
solving Sudoku puzzles.

• Ascii85: a program for encoding/decoding Adobe’s
binary-to-text encodings of the same name.

• ministat: a library that computes statistical info such
as mode, median, mean, variance, etc.

• finitefield: an implementation of finite field arithmetic.
• hebruby: a Hebrew data conversion program.
• set: Ruby’s set library and its associated test cases.
• Ruby Data Structures (abbreviated RDS): a library of

common data structures. We annotated two classes,
SinglyLinkedList and SinglyLinkedListElement .

The first five of these programs come from the Rubydust
benchmark suite [1]. We also tried to annotate the other
three Rubydust benchmarks, but those programs fail to run
under the latest version of Ruby, which rtc requires.

In addition to annotating the subject programs, we also
annotated the built-in Array, Hash, and Set libraries. These
particular libraries were chosen because they are the basis for
most user-defined data structures and they saw the heaviest
use in the programs we used for our evaluation.

Next we report on the overhead of rtc, which rtc features
were used for the subject programs, and the ease of the
conversion process.

Efficiency. The first three columns of the Figure 4 report
the running times for the program’s test suite on the original
program; on the annotated program under non-strict mode;
and on the annotated program under strict mode. While

1570

time (s) annotated unann. annotated Features
program unann. non-strict strict methods methods values Tuple {·} (⌧) [\ 8
Sudoku-1.4 0.04 5.34 7.58 8 1 10 0 0 2 5 0 0
Ascii85-1.0.2 0.02 0.05 0.05 2 1 0 0 0 0 0 0 0
ministat-1.0.0 <0.01 0.30 0.56 13 1 0 0 0 0 0 0 0
finitefield-0.1.0 <0.01 0.02 0.02 10 1 0 0 0 0 0 0 0
hebruby-2.0.2 <0.01 0.12 0.12 19 1 0 1 0 0 1 0 0
RDS-1.0.0 <0.01 0.01 0.01 7 2 3 0 0 0 3 0 7

library
Array – – – 71 4 – 0 28 – 7 35 18
Hash – – – 38 2 – 4 12 – 5 9 8
Set – – – 21 13 – 0 7 – 0 2 7
Features: Tuple = Tuple types, {·} = block types, (⌧) = rtc cast , [= union types, \ = intersection types, 8 = polymorphic types

Figure 4: Summary of evaluation results

the performance overhead of rtc is relatively large, the test
suites run quite rapidly in most cases, suggesting that rtc
is practical in many testing scenarios. As mentioned in sec-
tion 3, rtc creates a wrapper layer that all calls must go
through whether there is an active proxy or not. This extra
level of indirection is the main source of the overhead in rtc
due to the ine�ciency of method calls in Ruby.

The program with the most substantial overhead is Su-
doku. This program makes extensive use of large arrays
and hashes, and so the overhead of rtc’s method intercep-
tion has a large cost. To partially address this issue, rtc can
be disabled in production by setting by the RTC DISABLE
environment variable to a non-empty value. When rtc is
disabled, no wrappers are created by calls to typesig. In ad-
dition, annotations on objects via rtc annotate and rtc cast
become no-ops. That is, instead of returning a new proxy
object, they simply return self . This enables the program-
mer to use rtc in a test environment where some overhead
may be acceptable and then disable rtc in the field.

Rtc features. The middle three columns of Figure 4 count
the number of unannotated methods, annotated methods,
and explicit annotations of values we added. In the subject
programs, the only unannotated method was initialize , the
constructor. Since the receiver of initialize is always a newly
created, and hence raw, object, rtc will never type check an
initialize call. In the future, we plan to investigate other

policies for constructors.
The only subject program for which we needed explicit

rtc annotate calls was Sudoku. These annotations were for
several large arrays built during initialization, and they im-
proved the performance of rtc in strict mode since otherwise
rtc would repeatedly iterate over those arrays to infer their
types at each use.

In the library classes, we were able to annotate almost all
of the methods for Array and Hash. There were several meth-
ods, however, that have no reasonable type annotation in
rtc. For example, Array#flatten returns a new array in which
arbitrary depth nestings of array have been removed from
the receiver. Even worse, Array#flatten! does the same, but
mutates the receiver object. We leave these as unannotated,
so they may be used but are not type checked. Unannotated
methods in the Set class include Set#flatten and methods
that use the Enumerable class, which is a mixin for collection
classes; rtc currently does not support mixins.

The rightmost columns of Figure 4 list how often various
typing features of rtc were used. To count uses of polymor-
phic types, we counted how many classes or methods have
annotations that bind type variables. The most commonly
used features in the subject programs are union and poly-
morphic types, and the most commonly used features in the
Ruby standard libraries are intersection and block types.
There were very few uses overall of tuple types and rtc cast .

The annotation process. We found the process of annotat-
ing the subject programs to be relatively straightforward: we
examined their code, looked for program invariants assumed
by the original authors, and turned those invariants into type
annotations. Although this was somewhat time consuming
for us, we expect the original authors of the methods would
be faster at this process.

We often had to iterate the annotation process as we found
mistakes in our typesigs. The most common errors we made
fall into a few groups. For some programs, we missed edge
cases in methods, such as sometimes returning false , and
so would initially annotate a method with a subset of its
possible return values. Similarly, we sometimes missed an
arm of an intersection type. Finally, we sometimes forgot to
cast a value typed with a union type to a more specific type
after the value was tested. In all cases, we found our errors
immediately upon running the test suites under rtc.

Not all type errors were due to our mistakes, however. The
Sudoku solver contains the following (correct) annotations:

107 typesig ”search : (...) ! %false or Hash<String,String>)”)
108 typesig ” string solution : (Hash<String,String>) ! String ”)

The search method returns false if the given puzzle is impos-
sible to solve, while string solution assumes that it is given
a valid puzzle solution. In the test suite, the return of search
is fed directly into string solution without checking for false .
While an error due to this mismatch never happens in the
test suite because all its puzzles are solvable, rtc appropri-
ately raises a type error.

5. RELATED WORK
As discussed in the introduction, rtc builds on the Ruby-

dust system of An et al. [1]; we even reuse some of the
same code base, specifically the type language parser and
some of the proxy-related code. The key di↵erence is that
rtc is a type checking system, whereas Rubydust performs

1571

type inference. The addition of checking introduces several
new concerns: adding explicit annotations (rtc annotate) and
type casts (rtc cast); inferring types of raw values passed to
annotated positions; and making control of type checking
finer grained, that is, driven by annotated objects, rather
than by annotations on classes as in Rubydust. Rtc also sup-
ports some features that Rubydust does not, including block
types and tracking type annotations on self . Rubydust does
not do the latter because its coarse-grained distinction be-
tween typed and untyped code means it does not matter
whether self is proxied. Finally, perhaps the most impor-
tant di↵erence from a usability perspective is that rtc type
errors are reported as soon as they occur, whereas Rubydust
generates constraints and only solves them at the end of ex-
ecution. Thus, it may be harder in Rubydust to understand
reported errors.

Several researchers have proposed adding static types and
static type inference to various dynamically typed languages,
including Ruby [9, 8], Python [5, 11, 3], and JavaScript [4,
14] among others. Similarly, gradual type systems [12] like
those for Scheme [15] and Thorn [6] pair a dynamically typed
language with a sister, statically typed language. The typed
and untyped parts of a program are allowed to interact with-
out breaking the invariants of the typed language. All of
these systems perform static analysis, whereas rtc is a li-
brary that operates purely at run time. One advantage of
rtc’s approach is that it does not require maintaining a Ruby
frontend, which the Rubydust authors have pointed out as
problematic [2]. Another advantage of rtc is that because it
operates at run time, rtc only observes realizable execution
paths through the target program and can easily operate
in the presence of dynamic features such as eval, reflective
method invocation, and method missing.

Rtc’s dynamic implementation is inspired by research into
contract systems. Existing contract systems for Ruby are
limited to “design by contract” [10] systems, which anno-
tate classes with preconditions, postconditions, and invari-
ants that are simple assertions checked only on method en-
try and method exit. Rtc’s dynamic checks are closer to
those provided by higher-order contracts [7, 13]. Like higher-
order contract systems, rtc wraps method arguments and
results with proxies that stay with those objects as they
flow through the program. This enables rtc not just to en-
force preconditions and postconditions, but also to check
that the type of a parameter is adhered to within the body
of a method and that the type of a return value is respected
long after the method has returned.

6. CONCLUSION
We present rtc, a Ruby library that adds type checking

at method call boundaries. Rtc uses proxy objects to wrap
regular objects with annotated types and only type checks
annotated methods on classes and proxied objects. Our ex-
perimental results suggest that rtc is a practical, useful sys-
tem. In the future, we plan to apply rtc to Ruby on Rails

programs, and explore extending its type checking capabil-
ity to reason about some of the complex invariants of the
Rails framework.

Acknowledgments
Thanks to Aseem Rastogi, Mike Hicks, and the anonymous
reviewers for their comments on earlier drafts of this paper.
This research was supported in part by NSF CCF-0915978
and CCF-1116740.

7. REFERENCES
[1] Jong-hoon (David) An, Avik Chaudhuri, Je↵rey S.

Foster, and Michael Hicks. Dynamic Inference of
Static Types for Ruby. In POPL, 2011.

[2] Jong-hoon (David) An, Avik Chaudhuri, Je↵rey S.
Foster, and Michael Hicks. Position Paper:
Dynamically Inferred Types for Dynamic Languages.
In STOP, 2011.

[3] Davide Ancona, Massimo Ancona, Antonio Cuni, and
Nicholas Matsakis. RPython: Reconciling Dynamically
and Statically Typed OO Languages. In DLS, 2007.

[4] Christopher Anderson, Paola Giannini, and Sophia
Drossopoulou. Towards Type Inference for JavaScript.
In ECOOP, 2005.

[5] John Aycock. Aggressive Type Inference. In
International Python Conference, 2000.

[6] Bard Bloom, John Field, Nathaniel Nystrom, Johan
Östlund, Gregor Richards, Rok Strnǐsa, Jan Vitek,
and Tobias Wrigstad. Thorn: Robust, Concurrent,
Extensible Scripting on the JVM. In OOPSLA, 2009.

[7] Robert Bruce Findler and Matthias Felleisen.
Contracts for Higher-Order Functions. In ICFP, 2002.

[8] Michael Furr, Jong-hoon (David) An, and Je↵rey S.
Foster. Profile-Guided Static Typing for Dynamic
Scripting Languages. In OOPSLA, 2009.

[9] Michael Furr, Jong-hoon (David) An, Je↵rey S.
Foster, and Michael Hicks. Static Type Inference for
Ruby. In OOPS Track at SAC, 2009.

[10] Bertrand Meyer. Applying Design by Contract. IEEE
Computer, 25(10):40–51, October 1992.

[11] Michael Salib. Starkiller: A Static Type Inferencer
and Compiler for Python. Master’s thesis, MIT, 2004.

[12] Jeremy G. Siek and Walid Taha. Gradual Typing for
Functional Languages. In Scheme and Functional
Programming Workshop, 2006.

[13] T. Stephen Strickland and Matthias Felleisen.
Contracts for First-Class Classes. In DLS, 2010.

[14] Peter Thiemann. Towards a Type System for
Analyzing JavaScript Programs. In ESOP, 2005.

[15] Sam Tobin-Hochstadt and Matthias Felleisen. The
Design and Implementation of Typed Scheme. In
POPL, 2008.

1572

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Table of Contents

