
c©Copyright 2019

John Toman

Learning to Adapt:
Analyses for Configurable Software

John Toman

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2019

Reading Committee:

Daniel Grossman, Chair

Zachary Tatlock

Rastilav Bodik

Program Authorized to Offer Degree:
Computer Science & Engineering

University of Washington

Abstract

Learning to Adapt:
Analyses for Configurable Software

John Toman

Chair of the Supervisory Committee:
Professor Daniel Grossman

Computer Science & Engineering

Configurations are powerful tools for end-user customization of software. For example,

non-expert software users may customize the behavior of programs via option menus,

system administrators may tune server behavior by editing configuration files, and soft-

ware developers may specialize generic frameworks to suit their purposes with software

annotations and configuration files. Although configurations are extremely powerful

tools that increase software flexibility, they increase implementation complexity causing

subtle bugs and confounding analysis tools.

This dissertation considers the challenges posed by highly-configurable software and

proposes that specialized program analyses can overcome these challenges. In particu-

lar, this dissertation explores two main topics. The first direction is creating program

analyses to find defects in software that supports configuration changes at runtime. The

second is the development of principled techniques for analyzing applications built on

highly-configurable frameworks. These two research efforts are supported with formal

proofs and empirical evaluations of proof-of-concept implementations.

TABLE OF CONTENTS

Page

Acknowledgments . iv

Dedication . vi

Chapter 1: Introduction and Thesis . 1

1.1 Thesis Statement . 3

1.2 Contributions . 5

1.3 Structure of This Document and Relationship to Existing Work 7

Chapter 2: Dynamic Configuration Update Correctness and Dynamic Checking . 9

2.1 Introduction . 9

2.2 Correctness Conditions for Dynamic Configuration Updates 11

2.3 Technique . 15

2.4 Automated Bug Avoidance and Repair . 27

2.5 Implementation . 31

2.6 Evaluation . 36

2.7 Conclusions . 51

Chapter 3: Static Verification of External Resource Consistency 53

3.1 Introduction . 53

3.2 At-Most-Once Problems . 56

3.3 The Legato Analysis . 58

3.4 Interprocedural Analysis . 70

3.5 Implementation and Challenges . 81

3.6 Evaluation . 89

3.7 Conclusion . 101

i

Chapter 4: Related Work for Dynamic External Resources 102

Chapter 5: Whole-Program Static Analysis of Modern Applications 107

5.1 Introduction . 107

5.2 Static Analysis Challenges . 108

5.3 Conclusion . 118

Chapter 6: Hybrid Mostly-Concrete and Abstract Interpretation 120

6.1 Introduction . 120

6.2 Overview . 124

6.3 Preliminary Definitions . 131

6.4 Combined Interpretation . 138

6.5 Procedures . 152

6.6 Iteration Strategy . 156

6.7 Widening and Finitization . 157

6.8 Extensions for a Realistic Prototype . 159

6.9 Evaluation . 167

6.10 Conclusion . 171

Chapter 7: Supporting the Full JVM . 172

7.1 Introduction . 172

7.2 Java Path Finder . 174

7.3 Current Progress . 176

7.4 Scheduling Execution . 179

7.5 Future Challenges and Potential Solutions 187

7.6 Conclusion . 193

Chapter 8: Related Work in Whole-Program Static Analysis 194

Chapter 9: Conclusion and Future Work . 202

9.1 Techniques . 202

9.2 Future Directions . 204

Bibliography . 206

ii

Appendix A: Proofs for Chapter 3 . 223

A.1 Preliminaries . 223

A.2 Concrete Instrumented Semantics . 224

A.3 Abstract Semantics . 225

A.4 Proof . 226

Appendix B: Proofs for Chapter 6 . 229

B.1 Proofs for Section 6.4 . 229

B.2 Proofs For Section 6.5 . 237

B.3 Formalisms and Proofs for Subfixpoint Iteration 239

B.4 Formalisms, Soundness, and Termination of Widening Iteration 257

Appendix C: Proofs for Chapter 7 . 267

C.1 Loop Consistency . 267

C.2 Proofs . 268

iii

ACKNOWLEDGMENTS

This dissertation and the body of work it presents is the product of many different
contributions from multiple people; I owe so much to so many people, and could fill
pages and pages with acknowledgments and thanks.

My advisor Dan Grossman took a chance on me, and has shepherded me through
grad school despite hard right turns into program analysis and abstract interpretation.
He has been a steadfast source of paper feedback, reasoned advice, and his own peculiar
brand of advisor encouragement (documented in many Facebook posts). I owe this PhD
to him, and am eternally grateful for all he has done for me.

The PLSE lab at UW at different times provided valuable rubber ducking, coffee, at-
large advising, paper editing, and proof checking. In particular, I’d like to thank James
Bornholt for his advice, mentoring, and perspective that was always available when
others were asleep. James Wilcox deserves acknowledgment for being my resident math
consultant, who was willing to sit through long whiteboard proofs, and has patiently
explained whether least upper bound operators are monotone.1 Further thanks are due,
in no particular order, to: Jared Roesch, Chandrakana Nandi, and Pavel Panchekha. I
would also like to acknowledge those who took the time to make my papers better with
thoughtful feedback; the work presented here is better thanks to them. In addition to all
of the people thanked above, I would like to acknowledge: Ben Hardekopf, Bill Harris,
Emina Torlak, Manuel Fahndrich, Francesco Logozzo, and Christian Kästner. I would
also like to thank Jonathan Bell and Johannes Späth for their technical assistance during
the Staccato and Legato projects. I would also like to thank my thesis committee for
their selfless service. Reading this dissertation and sitting for exams was quite the time
investment, and they all served with distinction.

I would like to particularly acknowledge my graduate student mentor, Doug Woos.
Doug is not only a good friend (and colleague), but provided invaluable feedback on
proofs, fellowship applications and paper drafts, and served as a critical lifeline during a
difficult transition to graduate school life. He helped me manage expectations, navigate
advisor relationships, and deal with the frustration of paper rejection. He is extremely
generous with his time and advice; my success in graduate school is thanks to him.

Enough good things cannot be said about Professor Doctor Zachary Tatlock, PhD:
his generosity with this time, energy, and enthusiasm is matched only by his heartfelt,

1They are not.

iv

genuine desire to see students succeed, even when they aren’t his own. Zach was my
safety net and trusted confidant who always found time in his busy schedule for me. He
is a model advisor, and I hope to be half as good as him someday.

Many thanks are due to my family for the various forms of support they gave during
my time in graduate school, and for their tireless work to get me to where I am today.
Special thanks are due to my late grandfather, Robert Toman: his frugality and planning
gave me the opportunity to pursue higher education. I only wish he was here to see the
results of his efforts.

I would like thank the friends that made my time in Seattle so rewarding: Ryan
Maas, Camille Cobb, Jeff Snyder, Daryl Zuniga, Joe Redmon, Aleks Holynski, and Harley
Montgomery. Some of my best memories are going places and losing board games to
these people.

Although it will be many years until he can read this, I want to thank my son Corvin
Tobias Beswick Toman for all the joy he brings to my life. But most of all, I want to thank
my wife, Laura Toman. Laura’s endless and tireless support made all of this possible;
I owe her everything. She was my partner, confidant, support, best friend, and board
game opponent. She kept our family and lives on track while I finished this dissertation.
This dissertation is 274 pages long; I could easily fill twice that many with her praises.
Thank you Laura, you made this all worth it.

v

DEDICATION

Dedicated to my wife, Laura Toman, without whom none of this would be possible.
This dissertation and the work contained within is as much a product of her hard work
as it is mine.

vi

ACCESSING THIS DISSERTATION

This dissertation was produced under the spirit of open scholarship. Please do not

pay for access to this document: if you cannot find a freely available PDF of this disser-

tation, contact me at jtoman@cs.washington.edu. I will happily provide a copy of this

work free of charge.

vii

1

Chapter 1

INTRODUCTION AND THESIS

Today’s software is highly configurable [207, 208, 97]. Configurations are found across

the software stack, from kernel compile-time options [143], command-line options [176],

configuration menus in desktop software [96] and mobile applications [120], to server

and cluster software configuration files [202]. These configuration options1 increase the

portability and reusability of software. By tweaking the right configuration options, an

end-user can modify a program’s behavior in a controlled manner to better suit his or

her needs. For example, the number of threads used by a web server can be increased

in response to spikes in web traffic, or unneeded kernel features can be disabled for

performance.

In addition to user-facing configuration options, configurations are ubiquitous in

the realm of software engineering. Modern applications are rarely written from the

ground up; developers use existing, proven libraries and frameworks to handle basic,

common functionality. Like user-facing applications, developers can configure libraries

and frameworks to better suit their requirements. For example, almost every major com-

ponent of Spring (a Java application framework) can be tweaked or customized using

XML files and/or program annotations.

Without configuration options, modifying program behavior would be solely the do-

main of software engineering experts. For instance, changing the number of threads

used by a webserver would require:

1. Finding the source code of the webserver,

1 A note on vocabulary: I am unaware of any standard, rigorous definition that clearly differentiates
between a configuration option and program input. For this document, I will leave the meaning of
“configuration option” ambiguous, relying on the reader’s intuitive understanding of the term.

2

2. Identifying the source code file/module responsible for thread management

3. Changing the number of threads, including rigorous testing to ensure any changes

do not introduce new errors,

4. Recompilation of the modified program, and finally

5. Redeployment, which may include repackaging, archive signing, distribution, etc.

Several things must go right for the above process to succeed. At the very least, the

source code of the webserver must be available (an impossibility if the server is pro-

prietary) and the user must be both an expert in the implementation language and the

program itself. In contrast, armed with a well-documented and easily accessible con-

figuration interface, the end-user may effect the desired change by modifying a single

number. Further, most industrial-strength software supports configuration changes at

runtime, obviating redeployment and lost uptime. Similarly, if frameworks did not al-

low extensive customization via configuration files and annotations they would be far

less convenient for software developers

Software configurations effectively allow modification of a program’s behavior with-

out modifying its source code after it has been delivered to the end user.2 As such, they

are extremely powerful tools, enabling a (limited) form of program customization with

end-user programming.

Unfortunately, the convenience of configurable software does not come without cost.

Continuing with the programming metaphor, configuration options, like any program-

ming language, can be used incorrectly. End-users, faced with a dizzying array of con-

figuration options, can misconfigure programs leading to crashes or performance issues.

2This characterization does not hold universally, as kernel configuration options do require changing
source code and recompilation. This edge case illustrates the difficulty of precisely defining a configu-
ration option.

3

Similarly, developers must also reason about non-obvious interactions between configu-

ration options, and must maintain several different variants of the same programs. Even

implementing configuration updates is challenging, as a recent bug3 in Solr4 demon-

strates; this bug prevented Solr from correctly applying a configuration change requested

by the user. Finally, configurable frameworks exhibit an enormous number of possible

behaviors which depend on application-specific configurations. This flexibility is often

implemented using difficult-to-analyze features such as reflection, metaprogramming,

and multiple layers of abstraction. The framework effectively functions as an interpreter

for some configuration language. Static analysis developers must contend with this ex-

treme variability, pervasive use of difficult-to-analyze idioms, and lack of information

when analyzing framework-based applications. Analyzing a framework implementa-

tion without considering the configuration information is roughly equivalent to guess-

ing the behavior of an interpreter’s execution without access to the source program that

produced that execution.

The need for configuration-aware analyses is clear given this modern software land-

scape and the challenges it poses. Some steps have already been taken in this direction.

For example, many researchers have investigated helping users diagnose crashes or per-

formance problems due to misconfiguration [207, 197, 201, 9, 10, 96, 208, 67, 158]. Other

researchers have helped developers understand the implications of configuration op-

tions [120, 161], and developed techniques to exploit static framework configurations

to improve static analysis precision and soundness [8, 189, 174]. Despite this progress,

significant challenges remain in the field of configurable software.

1.1 Thesis Statement

I propose that the quality of modern, highly-configurable software can be improved

with program analyses and techniques that reason directly about software configura-

3https://issues.apache.org/jira/browse/SOLR-3587
4http://lucene.apache.org/solr/

https://issues.apache.org/jira/browse/SOLR-3587
http://lucene.apache.org/solr/

4

tions. Under this broad thesis I will explore and substantiate two more specific theses. In

this section I state these theses and their meaning; the contributions which substantiate

these claims are described in the next section.

The first thesis posits that defects in programs’ support for configuration changes

at runtime can be detected with static and dynamic techniques. In particular, this

thesis concerns programs that support configuration changes which take effect without

program restart or service interruption. These update implementations must contend

with concurrency, aliasing, and caching; failing to account for any one of these may cause

program errors. This thesis claims that specialized analyses can effectively detect these

errors. Within this thesis is the implicit claim that we can characterize the correctness of

these implementations and configuration changes in a formal, uniform way.

The second thesis states that the performance and precision of static analyses over

framework-based applications can be improved with the principled combination of

abstract and concrete interpretation that also exploits static configuration informa-

tion. Recall that frameworks are both highly configurable and use difficult-to-analyze

program features that depend on application-specific configurations. Existing static pro-

gram analysis techniques generally must sacrifice some combination of performance,

precision, or soundness. In other words analyses may either miss errors (soundness),

give too many incorrect answers (precision), or take unreasonably long to execute (per-

formance). This thesis claims that concretely executing framework code while using ab-

stract interpretation on the application code is a precise and performant analysis strategy.

In particular, it posits that the concrete interpreter may exploit a framework’s configu-

ration information to precisely and exactly resolve difficult-to-analyze program features.

Further, this thesis claims that this combination can be proved sound, i.e., it is a princi-

pled approach to combining interpretation strategies.

5

1.2 Contributions

To substantiate the above theses, this dissertation presents three major contributions. I

now expand on these contributions and provide the high-level results and takeaways.

Staccato Staccato is a dynamic analysis which finds defects in programs’ support

for configuration changes that take effect at runtime without service interruption. I

hypothesized that these updates (which we call “dynamic configuration updates” or

DCU) are difficult to implement correctly, and failing to do so may cause subtle and

difficult to diagnose program errors. Staccato is, to the best of my knowledge, the first

work to address this problem. I first developed two novel correctness conditions for

DCU implementations and hypothesized that violations of these correctness conditions

would cause undesirable program behavior. I then implemented the Staccato analysis,

which detects these violations by monitoring executions of instrumented Java programs.

I confirmed Staccato’s effectiveness with an empirical evaluation of our correctness

conditions and analysis on 3 real-world Java programs. Staccato detected violations

of the correctness conditions in all of the Java programs, and confirmed with manual

inspection that these violations corresponded to (sometimes serious) program errors.

These experimental results indicate that some programmers do struggle to implement

DCU correctly, and Staccato is an effective tool for finding bugs in program’s dynamic

configuration update functionality. In summary, the contribution of Staccato is an

empirically effective dynamic analysis which detects violations of novel correctness

conditions for online configuration update mechanisms.

Legato Legato is a static approach for finding defects in dynamic configuration up-

date implementations. To make detecting these defects tractable in a static setting, I

developed a third, novel correctness condition called the at-most-once condition. This

condition over-approximates one of the correctness conditions checked by Staccato. It

6

is amenable to static checking, unlike the two correctness conditions used by Staccato.

I developed a sound, heap-, context-, flow-, and field-sensitive static analysis which ver-

ifies that a program adheres to the at-most-once condition, and by extension, does not

contain certain classes of DCU errors. In fact, as argued in our work, the at-most-once

condition is appropriate for verifying consistent interaction with parts of a program’s

dynamically changing execution environment beyond just configuration options. We

evaluated Legato on 10 real-world Java applications and found 65 violations of the

at-most-once condition which correspond to real program defects in dynamic configura-

tion update implementations. This result further establishes that programmers struggle

to correctly implement DCU mechanisms and that Legato is an effective static analysis

for detecting these errors. In summary, Legato is an empirically validated static anal-

ysis which checks the novel at-most-once condition which can find errors in dynamic

configuration update implementations. Further, the work on Legato and Staccato are

the core contributions which substantiate my first thesis.

Concerto Finally, this dissertation presents my work on Concerto, an analysis frame-

work designed to increase analysis performance and precision on framework-based ap-

plications. Concerto combines concrete and abstract interpretation by concretely ex-

ecuting framework code and running an abstract interpreter on application code. By

combining analysis strategies, Concerto benefits from the strengths of both techniques:

the scalability and computability of abstract interpretation plus the precision of concrete

interpretation. During concrete execution, Concerto reads a framework’s static configu-

ration, which often ensures the framework takes a single, deterministic path of execution.

My work formalized this hybrid model within the theory of abstract interpretation and

proved that the combination of abstract and concrete interpretation soundly summarizes

program behavior. I also showed that Concerto delivers provably improved precision

for certain classes of abstract interpretation. I developed a prototype implementation of

Concerto which analyzes a Java-like, object-oriented language. To confirm the benefits

7

of combined interpretation, I applied this prototype to a difficult-to-analyze, highly-

configurable framework. The prototype of Concerto was significantly more precise

and performant compared to standard abstract interpreters. In summary, Concerto is

a principled framework for precisely analyzing framework based applications with

the combination of concrete and abstract interpretation. This work substantiates the

second thesis above.

1.3 Structure of This Document and Relationship to Existing Work

I now outline the remainder of this dissertation. Most of the work presented in this

dissertation has been published in conference proceedings. Where appropriate, I will

note the differences between the material presented here and past papers.

The first half of this dissertation (Chapters 2–4) focuses on the first thesis. Chapter 2

describes the Staccato dynamic analysis sketched above. This chapter is based upon

work published in ECOOP 16 [182] and contains a discussion of consistency groups that

were omitted from the original paper. Chapter 3 presents the Legato analysis and is

an extended version of the paper published in ECOOP 18 [184]. I have expanded the

termination argument, described the representation of our edge functions, and provided

a closer comparison with Staccato’s results and techniques. Finally, Chapter 4 reviews

the related work of Legato and Staccato.

The second half of this dissertation (Chapters 5–8) focuses on the second thesis. Chap-

ter 5 describes the challenges found in analyzing modern applications and motivates the

following two chapters. This chapter is an extended version of the first half of a position

paper published in SNAPL 17 [183]. I have expanded this chapter to include concrete

examples of difficulties I faced during the development of Legato. Chapter 6 describes

Concerto and presents the results of our experiments. This chapter is based upon work

published in POPL 19 [185], and has been extended with additional notation and ex-

amples that were omitted from the original version for space reasons. This chapter also

corrects a notation error that appeared in our conference version. Chapter 7 describes

8

the in-progress work on extending Concerto to handle the full JVM and Java language.

This project, named Symphony, is not yet complete and this work is unpublished. The

chapter describes the current progress on Symphony, a novel analysis scheduling algo-

rithm, the remaining technical and research challenges, and potential solutions to these

challenges. Chapter 8 closes the second half with a discussion of related work in Con-

certo and Symphony’s areas.

Finally, the dissertation concludes with Chapter 9, which summarizes the dissertation

and describes some future work. Some of the directions outlined are drawn from my

previously cited position paper [183]. Appendices A and B contain the proofs for Legato

and Concerto respectively. Appendix C contains some preliminary correctness proofs

of the scheduling algorithm described in Chapter 7.

9

Chapter 2

DYNAMIC CONFIGURATION UPDATE CORRECTNESS AND
DYNAMIC CHECKING

2.1 Introduction

The configurability of modern software described in Chapter 1 increases the reusability

and portability of software. Along with high levels of configurability, software is in-

creasingly subject to stringent uptime requirements; restarting an application to effect a

configuration change is not always feasible. To accommodate configurability and robust-

ness, many applications support configuration options that can be changed at runtime.

We call a configuration change at runtime a dynamic configuration update (DCU).

Unfortunately, it is difficult to implement dynamic configuration updates correctly.

The Solr bug1 mentioned in Chapter 1 demonstrates this challenge. The Solr user may

specify analyzers in a configuration file that is read by Solr at startup. These analyzers

process text before it analyzed, applying case normalization, removing stop words, and

so on. Solr also provides a reload command which re-reads the configuration file and

re-initializes the system. However, the analyzers were not updated to reflect the new

configuration, even though Solr reported the reload complete. Solr would then silently

misprocess data and incorrectly answer user queries. The only indication that something

was wrong was Solr’s output, which required careful inspection on the part of the user.

We found similar defects in multiple applications.

This chapter presents, to the best of our knowledge, the first study of defects in dy-

namic configuration update implementations. We have developed a dynamic analysis

that can assist developers in finding and diagnosing defects in their DCU implementa-

1https://issues.apache.org/jira/browse/SOLR-3587

https://issues.apache.org/jira/browse/SOLR-3587

10

tions. We implemented our technique in Staccato (STAle Configuration and Consis-

tency Analysis Tool), a prototype DCU error detection tool for Java programs.

Our approach checks one of two alternative correctness conditions for DCU systems,

as chosen by the programmer. The first condition states that old versions of configura-

tion options may not be used after a configuration update. The second states that only

one version of a configuration option may be used during a single method execution.

Both conditions provide a possible specification of program behavior in the presence of

dynamic configuration updates. Choosing the appropriate correctness condition for a

program unit requires domain knowledge. We have the user of Staccato select the ap-

propriate condition with a few lines of high-level annotations (fewer than 0.7 per 1,000

SLOC in our evaluation).

Underlying both conditions is the notion of versioning the software configuration. For

every program value, Staccato tracks which configuration options, and which versions

of those options, were used to construct that value. This information moves with a

value as it transformed and combined with other values. Whenever a value is read by

the program, Staccato checks that the value does not violate the correctness condition

selected by the programmer. Our analysis supports concurrency and requires no changes

to the JVM.

In addition to bug finding, Staccato provides support for program repair and bug

avoidance. Staccato can transparently repair program schedules to hide insufficient

synchronization around configuration accesses. In addition, when Staccato detects

a value built from out-of-date configuration options, it calls a programmer-provided

callback to update the stale value. We used this functionality to repair DCU errors that

we discovered in our evaluation. We also found this technique to be effective enough

that for some projects, we were able to add DCU support for options that previously

required a restart.

We applied Staccato to three large open-source projects with extensive support for

dynamic configurability. These were code-bases with which we were not previously

11

familiar, but we were still able to effectively use Staccato to find DCU defects in all of

them.

In summary, this chapter makes the following contributions:

• We provide two correctness conditions for software that supports dynamic config-

uration updates (DCU).

• We define the problem of detecting and diagnosing errors in DCU code.

• We describe how errors in DCU implementations can be discovered with a novel

dynamic information-flow tracking approach.

• We describe Staccato, a tool implementing this approach for Java programs.2

• Using Staccato, we show that bugs in DCU implementations affect multiple open-

source projects, and that our technique is effective for finding these errors.

The rest of this chapter is organized as follows. Section 2.2 introduces and justifies the

correctness conditions checked by our approach. Section 2.3 introduces an information-

flow tracking technique for detecting correctness violations in programs that support

DCU. Section 2.4 details our approach for bug avoidance and program repair. Section 2.5

describes our implementation. Section 2.6 presents the results from applying Staccato

to three open-source software projects. Section 2.7 concludes.

2.2 Correctness Conditions for Dynamic Configuration Updates

Staccato identifies errors caused by defects in dynamic configuration update mecha-

nisms. We are unaware of any agreed upon correctness definition for DCU implemen-

tations either in industry or the research literature (see Chapter 4). Accordingly, we

2Staccato is open-source. Our implementation and the tests we ran for this research can be found at
https://github.com/uwplse/staccato

https://github.com/uwplse/staccato

12

1 class RequestManager implements Reloadable {

2 String targetIp , apiKey ;

3 RequestManager () {

4 targetIp = Config .get(" request .target -ip");

5 apiKey = Config .get(" request .api -key");

6 }

7 String doRequest () {

8 Request req = new ApiRequest (targetIp);

9 req.send(apiKey);

10 return req. response ();

11 }

12 void reloadConfig () {

13 targetIp = Config .get(" request .target -ip");

14 }

15 }

Figure 2.1: A bug caused by an incomplete configuration update: after an update

reloadConfig() does not read the updated "request.api-key" option.

1 class SpotService implements WebService {

2 String handleSpotRequest () {

3 return Config .get("verb") + " Spot , " + Config .get("verb") + "!";

4 }

5

6 void handleUpdateRequest (String newVerb) {

7 Config .set("verb", newVerb);

8 }

9 }

Figure 2.2: A bug caused by an inconsistent view of the configuration: the

handleSpotRequest method can observe two versions of the "verb" option in one execution.

13

first give two correctness definitions for DCU schemes that we developed after survey-

ing configurable software systems. Both conditions provide a specification for program

behavior in the presence of DCU. The programmer selects which condition to use for

an application, with the option of switching conditions (or opting out altogether) on a

per-method or per-class basis with annotations.

We begin with two motivating examples found in Figures 2.1 and 2.2. Both examples

are invented code fragments that are representative of two common errors we found

during our survey of configurable software. The Config class provides a mapping of

configuration options to string values. In Figure 2.1, the user may update either the

target IP or API key configuration options, after which the reloadConfig() method is

called. The implementation has an error in its handling of the update: the reloadConfig()

method fails to read the new value of the "request.api-key" configuration option. As

a result, the configuration update requested by the user is not completely applied. The

Solr bug described in the introduction is similar to this example.

Figure 2.2 shows a consistency issue that we frequently found in configurable soft-

ware. In this example, SpotService implements a web service that can be configured with

an administrative command. The primary functionality, expressed in the handleSpotRequest

method, is to simply echo back sentences of the form, "Run Spot, Run!". The verb

in the response is controlled with the "verb" configuration option. An administrator

can update the "verb" option by sending an update request that is handled by the

handleUpdateRequest method. If an update request is received concurrently with a reg-

ular client request, a user can receive unexpected responses such as "Run Spot, Bark!"

This error occurs because the use of "verb" in handleSpotRequest is not atomic: a sin-

gle invocation of handleSpotRequest can observe two inconsistent versions of the "verb"

configuration option.

Guided by these two examples and many others like them found in real programs,

we have developed two conditions for software that supports DCU. The first condition

is as follows:

14

Correctness Condition C1 (Staleness): An execution must observe only values derived

from the most up-to-date version of the program configuration.

We call correctness condition C1 the staleness condition as it states that a program may

not use values built from stale configurations. This correctness condition is potentially

violated in both examples. In the first example, after a configuration update the program

will read a stale version of the "request.api-key" option on line 9 in Figure 2.1. In the

second example, the string returned by handleSpotRequest may be derived (partially or

completely) from an old version of the "verb" option.

While condition C1 is sufficient to identify the bug in Figure 2.2, it is overly strict.

For example, consider again the scenario where the service in Figure 2.2 receives two

concurrent requests handled by handleSpotRequest and handleUpdateRequest respectively.

Due to non-determinism in thread scheduling, handleSpotRequest may return the response

"Run Spot, Run!" after handleUpdateRequest has updated "verb" to another value, such

as "Bark". This outcome violates condition C1, but some systems allow this behavior for

high performance. A more desirable correctness condition would rule out only inconsis-

tent outcomes, such as "Run Spot, Bark!", which violate the programmer’s expectations

about configuration behavior. This observation motivates a second correctness condition:

Correctness Condition C2 (Consistency): A method execution may observe only a single

version of each configuration option.

In other words, a program may use an old version of a configuration option provided

that version is not mixed with any other versions of the same option.

Both correctness conditions are useful in different situations. Which condition is

appropriate for a given program is application dependent. In practice, we found that

condition C2 (consistency) was a reasonable default for the programs in our evaluation

set. Nevertheless, the staleness condition is a good fit for global, configurable objects,

such as caches, database connections, etc. This led to a useful rule of thumb for using our

technique: use the staleness condition for methods that manipulate configurable objects

15

stored in static class members and use the consistency condition everywhere else. This

was sufficient to find several bugs, and required fewer than 1 annotation per 1,000 SLOC

across our evaluation set.

2.3 Technique

Staccato detects errors in DCU schemes with a dynamic information-flow analysis in

the style of taint analysis. There are three pieces of Staccato’s analysis, described in

the next three subsections. First, Staccato versions the software configuration and as-

sociates each program value with a configuration history (Section 2.3.1). A value’s history

records which options, and what versions of those option, were used to build that value.

Second, when values are combined, their configuration histories are merged to produce

a history for the output value (Section 2.3.2). This propagation models the flow of configu-

ration information through a program. Finally, whenever a value is read by the program,

Staccato checks for violations of the DCU correctness conditions (Section 2.3.3). To ease

explication, we will first describe our technique in terms of only detecting violations of

the staleness condition (C1). Our approach for the consistency condition (C2) is pre-

sented in Section 2.3.4 as an extension to this technique.

2.3.1 Configurations Values

Staccato models the configuration of a program as a global map from strings to strings.

Following standard terminology, we call each key an option. We call each value in the

map a configuration value. Staccato also internally associates each configuration option

with an epoch counter. These option epochs version the configuration values of a program.

The epoch counters are stored in a map V from options to epochs: the current epoch of

an option is denoted V[o]. When an option o is updated, the value of V[o] is incremented.

We will use e to denote arbitrary epoch values.

Staccato also tags each program value with a configuration history. The configuration

16

1 String foo(String a, String b, boolean t) {

2 if(t) { return a; } else { return b; }

3 }

4 // V["foo"] = 2

5 String s = Config .get("foo"); // sH = {"foo"→ 2}

6 Config .set("foo", "..."); // V["foo"] = 3

7 String r = Config .get("foo"); // rH = {"foo"→ 3}

8 String q = foo(r, s, false); // qH = {"foo"→ 2}

9 q = foo(r, s, true); // qH = {"foo"→ 3}

Figure 2.3: Example configuration histories in a program. The history of the configura-

tion value returned by Config.get on line 5 maps "foo" to the current version of "foo",

V["foo"] = 2. After the update on line 6, the epoch of "foo" is incremented and the

value returned on line 7 is tagged with the new version. Notice that on lines 8 and 9 the

configuration histories of r and p have moved through method parameters and return

statements automatically.

17

history for a value v records the configuration options used to construct that value, along

with the epochs (i.e., versions) of those options. The notation vH = {o1 → e1,o2 → e2, . . .}

denotes that v was constructed using the value of configuration options o1, o2, . . . at

versions e1, e2, . . . We will use vH as a function mapping strings (option names) to

epochs. dom(vH) denotes the set of options that appear in the configuration set vH.

The notation xH may be used when x is a variable to denote the history of the value

referenced by x.

Configuration histories are associated with program values (not textual program vari-

ables). Thus, as a value moves through field array, variable assignments, or method

boundaries, its configuration history automatically moves with it. This is important as

DCU bugs involve complex information-flow: the Solr bug from the introduction in-

volved dataflow through 7 classes.

Configuration histories are empty for most values: only values that depend on the

program configuration may have non-empty histories. Initially, the only values associ-

ated with non-empty configuration histories are configuration values themselves. When

an option o is retrieved from the program’s configuration, the returned configuration

value is tagged with the history {o→ V[o]} (recall that V[o] is the current epoch of o). An

example of this tagging and epoch counter updating can be found in Figure 2.3.

2.3.2 Propagation

Staccato tracks configuration values as they are combined with other values or trans-

formed by the program. Thus, when multiple values are combined to create a new

value, Staccato ensures that the new value’s configuration history soundly captures all

configuration information associated with the source values. The process of transferring

configuration histories from operands to outputs is called propagation.

During propagation, configuration histories are merged together pairwise to yield the

final configuration history of the output value. The merge operation for configuration

18

1 // V["foo"] = 2 and V["bar"] = 4

2 String f = Config .get("foo"); // fH = {"foo"→ 2}

3 String g = Config .get("bar"); // gH = {"bar"→ 4}

4 String h = f + g; // hH = {"foo"→ 2, "bar"→ 4}

5 Config .set("foo", "..."); // V["foo"] = 3

6 String j = h + Config .get("foo"); // jH = {"foo"→ 2, "bar"→ 4}

Figure 2.4: An example of history propagation and the history merge operation. On

line 4, the input configuration histories have disjoint domains and therefore the merge

operation is trivial. On line 6 the input configuration histories both have "foo" in their

domains. According to the merge rule, the smaller of the two epochs for "foo" is chosen,

which in this case is 2.

histories is denoted vH ∪ uH. If dom(vH) ∩ dom(uH) = ∅, then the merge operation is

a simple union. However, it is possible that some option o appears in both vH and uH.

Staccato conservatively handles this situation. Suppose that vH[o] = e and uH[o] = e ′.

The output configuration history maps o to the epoch min(e, e ′). This definition ensures

that the epoch recorded for a configuration option o in a configuration history xH is

the oldest version of o used (either transitively or directly) to construct x. Figure 2.4

demonstrates history propagation and an example of the merge operation.

Staccato does not check for violations of the correctness condition during prop-

agation. Recall that Staccato allows the programmer to select one of two possible

correctness conditions or to opt out of checking altogether. If we integrated checking

into propagation, we would have to implement three different propagation operations:

one for each correctness condition and one for propagation without any checking. By

separating the check and propagation operations, we can apply a uniform propagation

operation across the entire program and vary the check operation depending on the

correctness condition selected by the programmer.

19

1 class DBConnection {

2 @StaccatoPropagate (RETURN)

3 static DBConnection connect (String host , String user) { ... }

4 String fetchRow (String query) { ... }

5 }

6 User getUser (...) {

7 String host = Config .get("db -host"), user = Config .get("db -user");

8 DBConnection conn = DBConnection . connect (host , user);

9 String userInfo = conn. fetchRow (...);

10 return new User(userInfo);

11 }

Figure 2.5: Propagation involving objects dependencies. The @StaccatoPropagate anno-

tation the connect method propagates the configuration histories of the host and user

parameters to the DBConnection object returned from the method. As a result, the configu-

ration history of the conn in the getUser method has the "db-host" and "db-user" options

in its configuration history.

20

Propagation for Object Types A key design decision we faced is where propagation

should occur. Operations such as integer arithmetic, boolean operations, and string

concatenation all naturally propagate configuration information from source operands

to output values automatically. Although sufficient for tracking simple dependencies,

propagation involving only primitive values will miss dependencies at the object level.

Consider the example in Figure 2.5. In order to verify that the usage of the connection

object created on line 8 is correct, conn must inherit the configuration information of the

host and user configuration values. Therefore, Staccato also supports propagation from

method arguments to outputs. This method-level propagation expresses configuration

dependencies at a higher level of abstraction than what is possible with just primitive

operations.

The user opts-in to method-level propagation on a per-method basis with annotations

like the one seen on line 2 in Figure 2.5. The annotation argument indicates which

output of the method is the target of propagation. There are two possible outputs: the

return value (specified with the RETURN argument seen in the example) or the method

receiver. The receiver output is used primarily for modeling side-effecting methods such

as setters or constructors. After an annotated method is executed, Staccato combines

the configuration histories of the method’s arguments with the existing history of the

receiver or return value as appropriate. For the purpose of propagation to the return

value, the method receiver (if applicable) is treated as an argument. In the database

example, the propagation annotation ensures that connH contains the "db-user" and

"db-host" options.

We experimented with an eager approach that propagated configuration histories un-

conditionally from method arguments to method receiver/return values. This seemed

reasonable, as function outputs generally depend on input values. This strategy would

properly capture the relationship between the "db-host" and "db-user" options and the

conn object without user annotation. In practice, this approach suffers from a signifi-

cant loss of precision. In Figure 2.5, automatic propagation also “taints” the value read

21

from the database on line 9 with configuration information. By extension, the User object

created on line 10 would also contain the database configuration options in its configu-

ration history. However, using a User object built with data read from an old connection

is arguably not an error. This scenario is the expected behavior envisioned when a con-

figurable database connection was implemented. In general, automatic propagation tags

program data with unintuitive configuration histories, leading to false positives.

In our experience, configuration propagation is fairly rare; compared to the number

of method definitions in our evaluation code-bases, the number of propagation anno-

tations required was quite low, requiring fewer than 30 annotations across the entire

evaluation set. We also found that propagation annotations need only be applied at nat-

ural API method boundaries, requiring no reasoning about whole program flow or API

usage sites.

2.3.3 Checking

The final component of Staccato checks that the program does not observe values con-

structed from an out-of-date version of the configuration. Our approach actually checks

an equivalent condition: that the value read by the program reflects only the most recent

version of the configuration. A value v is up-to-date with respect to the current version

of the configuration (as recorded in V) iff: ∀o ∈ dom(vH), vH[o] = V[o]. In other words,

only the most recent configuration values may have been used (transitively or directly)

to construct v. This check is performed on value reads. For the purposes of our analysis

a value is read when it is: 1) passed as an argument to a method, 2) read from a field,

3) returned from a method, 4) read from a local variable, or 5) read from an array. If

Staccato detects that the condition has been violated, we have identified a DCU defect

and alert the user.

22

2.3.4 Extensions for Checking Consistency

We now discuss how to extend our approach to check for violations of the consistency

condition (C2). Recall that the second correctness condition states that a method execu-

tion may not observe inconsistent versions of the program configuration. Checking this

condition requires extending the representation of configuration histories and the merge

operator.

In addition to option epochs, Staccato also tracks an extra bit for each option o in a

configuration history. This bit is called the consistency flag. We denote this epoch-bit pair

with 〈e, f〉, where e is an epoch and f is the new consistency flag. The consistency flag

becomes set when Staccato detects that different versions of the same option have been

used to construct a value. Any values derived (in terms of the propagation described

in Section 2.3.2) from an inconsistent value are themselves marked as inconsistent. The

consistency flag is initially unset (f = 0) for configuration values returned from the

program’s configuration: by definition, a configuration value always represents a single

version of a configuration option.

The definition of the consistency flag yields the following extension to the merge

operator. Given two configuration histories to be merged, uH and vH, such that uH[o] =

〈e, f〉 and vH[o] = 〈e ′, f ′〉, the consistency flag in the merged configuration history is set

iff: e 6= e ′ ∨ f = 1∨ f ′ = 1. The epoch for o is computed using the min function as

previously described.

Given these extensions to configuration histories and the merge operation, checking

the consistency condition is straightforward. The consistency condition implies that

at most one version of each option may be used to build a value. The consistency

flag precisely tracks this requirement. Thus, checking a value v against the consistency

condition entails checking that all consistency flags in vH are unset. That is, a value v

reflects a consistent view of the configuration iff: ∀o ∈ dom(vH).vH[o] = 〈e, f〉 → f = 0.

This condition is checked at the same program points as the staleness condition.

23

1 int output = getValue ();

2 while (...) {

3 if(Config .get("op") == "+") {

4 output += 2

5 } else {

6 output *= 2;

7 }

8 }

Figure 2.6: A simplified example of DCU error involving control-flow. If the "op" op-

tion is changed during the execution of the loop, the output variable will be processed

inconsistently.

Control-Flow We have so far discussed the consistency condition in terms of values

produced and read by a program. This misses inconsistent behavior introduced by

control-flow. A simplified example, based on a real bug found in our evaluation set,

is shown in Figure 2.6. In this example, if the "op" property is updated before the loop

terminates, the output variable can reflect two different versions of the configuration.

Lillack et al. [120] have noted that configuration values are often used in branching

decisions so detecting errors involving control-flow is especially important.

To find errors like the one in Figure 2.6, we verify that the entire execution of a method

observes a consistent view of the configuration. To check this property, upon entrance

to a method we allocate a special sentinel object Σ. This object has a configuration

history, ΣH, which is empty at method entry. Unlike regular configuration histories,

which record which configuration options and versions were used to construct a single

value, ΣH records the options and versions used by the entire method. Whenever a value

v is read (as defined in Section 2.3.3), ΣH is updated such that ΣH ′ = ΣH ∪ vH. ΣH ′ is

immediately checked for consistency using the rule described above. At method exit, Σ

24

and its configuration history are discarded; each invocation begins with a fresh history.

Method histories are not inherited by callers or callees.

To see how this approach catches errors involving control-flow, consider again the

example in Figure 2.6. Assume at the entrance to the loop ΣH is initially empty. On

the first iteration of the loop, the Config.get("op") call on line 3 returns a configuration

value with the configuration history {"op" → 〈1, 0〉}. This is merged with Σ’s empty

configuration history, giving ΣH = {"op"→ 〈1, 0〉}. At the end of the first iteration, "op"

is updated. On the second iteration, the value returned by the get() call on line 3 is a

newer version of the "op" option, which is tagged with the history {"op" → 〈2, 0〉}. This

history is merged with ΣH. The result of this merge is ΣH = {"op"→ 〈1, 1〉}. Notice that

the consistency flag for "op" is now set: this signals that the execution has now observed

two conflicting versions of the "op" option. Staccato immediately reports this as an

error.

The assumption that a method execution is the single unit for consistency is a heuris-

tic, which may admit false positives and false negatives. A more precise approach would

require precise interprocedural tracking of control-flow dependencies. We experimented

with a version of Staccato that integrated an existing off-the-shelf implementation of

precise control-flow tracking found in recent versions of Phosphor [17]. Although this

approach was promising on small test examples, it suffered scalability issues when ap-

plied to the programs in our evaluation set. For example, after applying Staccato with

control-flow tracking to a web application, the program failed to return a response to

the client after 5 minutes. This overhead is due to the large amount of state maintenance

required for precisely tracking control-flow dependencies. In contrast, our approach is

relatively cheap to compute and can find inconsistencies introduced through control-

flow. In our experiments, this approach was not the source of any false positives.

Consistency Groups The approach described so far has assumed every configuration

option is independent of other options. However, one logical option may be stored across

25

1 class Locale {

2 @StaccatoPropagate (RECEIVER)

3 Locale (String country , String lang) { ... }

4 }

5 String translateMessage (String msg , Locale l) { ... }

6 void updateLocale (Locale l) {

7 Config .set(" country ", l. getCountry ());

8 Config .set(" language ", l. getLanguage ());

9 }

10 void writeMessage () {

11 String msg = "Hello world !!";

12 Locale l = new Locale (Config .get(" country "), Config .get(" language "));

13 output (translateMessage (msg , l));

14 }

Figure 2.7: An example of a single logical option being stored across multiple config-

uration options. The locale of the program is stored in two options: "country" and

"language". Notice that the reads of these options in updateLocale variable are unsyn-

chronized with the writes in the updateLocale method.

26

several program configuration options. This idiom is often used to simulate options that

are tuples. For example, in one of our evaluation programs the locale of the program

was stored using three configuration options. A simplified sketch of this situation is

shown in Figure 2.7.

However, this idiom gives rise to a special kind of consistency error found in the

above example. There is no synchronization around the reads of "country" and "language"

on line 12 and the corresponding updates on lines 7 and 8. If the update operation occurs

concurrently with the read of the locale options, an invalid Locale could be constructed

(e.g., the US version of Japanese). Even with the @StaccatoPropagate annotation on the

Locale constructor on line 2, Staccato as described so far would fail to detect this error.

In general, if two or more configuration options that represent a logical option are read

and updated without coordination, the program may observe an inconsistent version of

the logical option.

To detect errors like those described above, Staccato tracks a program’s use of log-

ical options in addition to the program options described so far. Staccato maintains a

set of option groups: each group Gi is a set of options o(i,1), . . . ,o(i,n) that together define a

logical configuration option named gi.3 For example, the program fragment in Figure 2.7

has a single option group: {"locale", "country"}. Similar to program options, a logical

configuration option gi is assigned an epoch in the version map, V and may appear in

the domain of configuration histories. The propagation and checking operations also

extend naturally to logical options with no changes. Each logical option gi conceptually

maps to a tuple of configuration values: this tuple’s elements are the values of the con-

figuration options that make up gi. Thus, an update of an option o ∈ Gi is actually an

update of the implicit tuple associated with gi. Similarly, a read of the option o ∈ Gi

from a program’s configuration abstraction is a projection out of gi’s (implicit) tuple.

This interpretation leads to Staccato’s approach to tracking a program’s use of log-

3The logical option names are internal to Staccato and do not appear in the program text. Staccato

generates a concrete name for each option group that does not clash with the program options.

27

ical options. When an option o ∈ Gi is updated, the epoch of gi in V is incremented by

one. The epoch of o is not incremented. Similarly, the read of an option o ∈ Gi from

the program’s configuration abstraction is tagged with the version of gi as recorded in

V. Thus, all options in a group lose their identities as distinct options.

This simple change is sufficient to detect the found error in Figure 2.7 and others

like it. Consider again the scenario where one thread reads the two locale options while

another thread updates them. Assume that the option group {"locale", "country"} has

been given the name g2, and that initially the V[g2] = 4. Suppose that the thread ex-

ecuting writeMessage executes first, and reads the "country" option. According to the

rules described above, the value returned from the call to Config.get is tagged with the

configuration history {g2 → 〈4, 0〉}. The thread executing writeMessage then stalls and con-

trol switches to the thread running updateLocale, which completes without interruption.

During the method, V[g2] is incremented once for each call to Config.set: at method exit

V[g2] = 6. The value returned from the second call to Config.get in writeMessage is there-

fore tagged with {g2 → 〈6, 0〉}. Thus, after the Locale constructor completes, the l object

will have the configuration history {g2 → 〈6, 0〉} ∪ {g2 → 〈4, 0〉} = {g2 → 〈4, 1〉} which is

marked inconsistent as desired. Note that any other interleavings of reads and updates

of "language" and "country" will also cause the l object to be flagged as inconsistent.

2.4 Automated Bug Avoidance and Repair

Staccato also uses the techniques developed for checking to (semi-)automatically avoid

DCU errors. Staccato supports two forms of program repair and automatic bug avoid-

ance. The first mechanism (Section 2.4.1) automatically repairs buggy program schedules

that would expose insufficient synchronization between configuration read and write

operations. Staccato detects uses of configuration-derived values and automatically

delays any configuration updates that would cause those values to become stale mid-

use. Staccato also has a limited form of value repair (Section 2.4.2). The programmer

may provide a function called by Staccato that repairs stale values when they are dis-

28

covered. Both mechanisms target reducing violations of the staleness condition. In our

experience, this condition is harder to get “right”, and therefore benefits the most from

automated assistance.

2.4.1 Coordinating Configuration Reads and Writes

In a multithreaded environment, it is possible for configuration updates to interfere with

an ongoing use of a configuration-derived value. For example, a method may read some

initially up-to-date variable x and then later during the same execution re-read x. If an

option in x’s configuration history is updated between the two reads, Staccato would

identify the second read as an error. It is assumed that the program has failed to appro-

priately react to the configuration update. However, the use of x—and by extension the

options in x’s configuration history—intuitively spans the two read operations. The error

occurs because the update operation failed to wait for the outstanding use of x (and its

corresponding configuration options) to finish. In general, an update of a configuration

option being used in another thread without proper synchronization can lead to a DCU

error.

Staccato can automatically prevent these errors by using a set of per-option read-

/write locks, called “option locks”. A read acquisition of an option lock indicates that a

thread is currently using that option (or some value derived from it). Updates to a con-

figuration option must first acquire the option’s lock in write mode. If the option being

updated is in use, the write acquisition will stall until all outstanding uses of the option

finish and all read holds are released. The option write lock is immediately released

after update is effected. The programmer is not responsible for acquiring the write locks

during configuration update: all updates are delegated to our implementation’s runtime

which handles locking (see Section 2.5).

Read-acquisition of option locks is automatically performed by Staccato during a

staleness check. Recall that staleness checks occur after every value read. After a value

29

is read, but before the staleness check is performed, Staccato read-locks the option

locks for every option in the read value’s configuration history. These locks are held

in read mode after control returns to the host program. The scope of a value’s use is

approximated as the method containing the initial read of that value. Thus, the read-

acquisitions on the option locks acquired during a read are held until the containing

method completes. Computing the scope precisely is not possible, so we use end-of-

method as heuristic. However, our heuristic was sufficient to prevent several errors that

Staccato would have otherwise detected during our evaluation.

2.4.2 Value Repair

Staccato’s value repair is an extension to the staleness checking mechanism. Unlike

schedule repair, value repair is not fully automatic: we require the programmer to

provide a repair function that updates a stale value to reflect the latest version of the

configuration. Although Staccato can automatically detect a stale value, automatically

updating it to the correct value is beyond pure automation because how to respond in the

presence of stale data is fundamentally application-specific.

Staccato’s value repair operates exclusively on object fields. Staccato already in-

tercepts all field reads for checking. When the Staccato runtime detects that a value

read from a field is stale, it checks if the object hosting the field implements an interface

that provides the Staccato update callback. If the callback exists, Staccato calls it with

the name and current value of the stale field. The callback may rebuild the stale field

in an application defined way. The updated field value is then returned from the hook

and transparently replaces the old, stale value as the result of the original field read.

If the callback is unable to repair a field, the original error is reported as usual; failure

to repair a field is not itself an error. Figure 2.8 shows a simplified application of this

update mechanism to the example given in Figure 2.1 in Section 2.2.

Repairing (or updating) a stale configuration derived value will likely use the same

30

1 class RequestManager implements StaccatoFieldRepair {

2 String targetIp , apiKey ;

3 String doRequest () {

4 Request req = new ApiRequest (targetIp);

5 req.send(apiKey);

6 return req. response ();

7 }

8 Object _StaccatoRepairField (String fieldName ,

9 Object oldValue , Exception staleException) {

10 if(fieldName . equals (" apiKey ")) {

11 return apiKey = Config .get("api -key");

12 } else if(fieldName . equals (" targetIp ")) {

13 return targetIp = Config .get("target -ip");

14 } else { throw staleException ; }

15 }

16 }

Figure 2.8: An updated version of the code in Figure 2.1 which uses Staccato repair

callbacks. The Reloadable interface has been replaced with the StaccatoFieldRepair. The

new method, _StaccatoRepairField is called when Staccato detects that one of the fields

is stale. The updated value returned from the method automatically replaces stale field.

31

options used to construct the old value. As a convenience, Staccato calls the update

callbacks while holding the option locks described in Section 2.4.1 in read mode. Thus,

although update callbacks may execute in a multithreaded context, the callback effec-

tively sees a consistent, immutable view of the necessary configuration options during

the rebuild operation. As a further convenience, Staccato ensures that no threads con-

currently execute the update callback on the same object.

2.5 Implementation

We have implemented our technique in a prototype tool named Staccato. Staccato is

an offline bytecode instrumentation tool for Java programs. Staccato modifies a pro-

gram’s bytecode to support tracking configuration histories and inserts code to perform

checking and propagation. The configuration tracking of Staccato is built on top of a

modified version of the Phosphor tool by Bell and Kaiser [17]. Staccato also includes

a runtime library that implements the operations described in Section 2.3. Staccato

does not automatically integrate with the program’s configuration abstraction, this must

be performed by the programmer when initially integrating Staccato into the software

(see Section 2.5.3).

2.5.1 Basic Operation

Applying Staccato is a two-step process. First, our modified version of Phosphor in-

struments the source program to add information tracking for primitive types. In a

second pass, Staccato uses ASM [111] and Javassist [42] to add code that calls into the

Staccato runtime to perform the check and propagation operations described in Sec-

tion 2.3. For each method covered by a correctness condition, Staccato instruments all

array, variable, and field reads, as well as method calls to check read values against the

correctness condition selected for the method. Staccato also inserts code at the end of

methods annotated with @StaccatoPropagate to perform history propagation. Phosphor

32

already adds unconditional propagation from source values to outputs for primitive in-

structions such as integer addition; we replaced the merge operation used by Phosphor

for these instructions with a call into our runtime library.

Staccato does not require a modified JVM. To ensure information is soundly tracked

through calls to the Java Class Library, a program must use a version of the JCL that

has been instrumented by Phosphor. To ease integration, we also added propagation

to certain “primitive” operations in the JCL, such as string concatenation or string-to-

integer parsing. To use Staccato, a program must be launched with a special JVM flag

that adds our instrumented versions of the system classes to the system classpath.

2.5.2 Tracking Configurations

To reduce memory overhead, Staccato does not unconditionally instrument every type

to carry configuration history. Staccato uses the programmer’s @StaccatoPropagate an-

notations to avoid instrumenting types that will provably never carry configuration in-

formation. For a type that may carry configuration information, Staccato adds a special

field to the class definition. Staccato also modifies the class definition to implement

an interface that marks the class as carrying configuration information. This interface

exposes two methods that provide the functionality to get and set the hidden field. Stac-

cato synthesizes these methods and inserts them into the class definition. For primitive

values (which do not have fields), we reuse the shadow taint variables added by Phos-

phor.

We chose the interface approach over using reflection for two reasons. First, deter-

mining if a type carries configuration information reduces to a relatively inexpensive

instanceof check. The second reason is to integrate with other dynamic bytecode rewrit-

ing tools. There are several libraries that perform instrumentation at runtime to intro-

duce features like database connection pooling.4 These tools introduce wrapper classes

4e.g., http://proxool.sourceforge.net/

http://proxool.sourceforge.net/

33

that encapsulate the original configuration carrying values. This hiding makes access to

a hidden tag field via reflection impossible. However, we found that these tools often

make an effort to preserve the interfaces of types being instrumented. This preservation

is done at the type level (a wrapper class for some type T also implements the same

interfaces as the original type T) and in terms of the behavior of the generated class (by

delegating method calls to the wrapped value). Using interfaces allowed Staccato to

seamlessly integrate with these dynamic tools. There is no guarantee of interoperability

but we found that using interfaces worked with all the dynamic tools we encountered.

2.5.3 Host Program Integration

Staccato does not manage the configuration of the software being analyzed: it is the

responsibility of the programmer to integrate the Staccato runtime with the software’s

configuration abstraction. Staccato assumes that the software uses a key-value data

structure for configuration information. The key-value abstraction is widely used in

practice for storing configurations, including the Java Properties API, the Windows Reg-

istry, and several real-world software projects [158, 96]. All of the software configurations

in our evaluation used this abstraction. Rabkin et al. have shown that complex, hierarchi-

cal configurations can be adapted to the key-value model [158]. We also assume that all

configuration values are strings. In principle, our approach and implementation could

be extended to support configuration values of arbitrary types. In practice, all programs

we encountered used strings for storage and performed parsing/serialization of these

strings where necessary.

Integrating a program’s configuration with Staccato requires only minimal source

changes. The programmer must delegate all set, get, and delete operations on the

configuration key-value store to the Staccato runtime. For example, suppose a pro-

gram’s configuration abstraction is stored in a HashMap variable named conf. Delegat-

ing get operations to Staccato involves changing calls of the form conf.get(key) to

34

Staccato.get(conf, key). Similar changes are made for delete and set operations. The

delegation ensures that Staccato increments option epochs on configuration update

and correctly tags configuration values read by the program. The API exposed by the

Staccato runtime is very general; we were able to incorporate all configuration abstrac-

tions we found in our evaluation.

2.5.4 Propagation Coordination

Multithreaded execution introduces the possibility for two or more propagation opera-

tions to occur concurrently. If two or more propagation operations involve the same ob-

ject concurrently, the Staccato runtime uses locking to impose an arbitrary order on con-

figuration history propagation. The history merge operation (see Sections 2.3.2 and 2.3.4)

is commutative: two or more propagation operations with the same target object can oc-

cur in any order without changing the final configuration history associated with the

object.

Adding locking to arbitrary user programs risks introducing deadlocks, so we mod-

eled the locking protocol of Staccato in the Alloy model finder [95]. Our verification of

Staccato’s locking was bounded, but we used significantly large parameters to achieve

high confidence in our results. Using this model, we verified that the locks introduced

by Staccato do not deadlock. Staccato’s locks can interact with a program’s existing

locks to produce deadlocks. In particular, a thread of execution may hold several option

locks in read mode, and perform arbitrary lock acquisitions. In practice, this was never

a problem in our evaluation.

2.5.5 Polymorphism and Subtyping

Staccato does not instrument every read within a method, only those it cannot prove

will not carry configuration information. During instrumentation, Staccato may en-

counter a value of type T that does not itself track configuration information, but there

35

is some subtype of T that does. In this scenario, Staccato cannot statically determine

if checking should be performed. Staccato handles this ambiguity by inserting condi-

tional checks. If the runtime type of an object does not carry configuration information,

a conditional check is a no-op, otherwise a regular check is performed.

Java generics pose a similar problem. Java implements polymorphism using type era-

sure [29]: Object is used to represent type variables at the bytecode level. As every type

is a subtype of Object, the use of type variable in a target program will lead to ambiguity

for Staccato’s instrumentation. However, this situation is simply a degenerate case of

the subtyping ambiguity described above. Staccato therefore resolves all ambiguity

caused by generics by exclusively using conditional checks.

2.5.6 Limitations

Staccato inserts the code that performs the propagation operation at method return

after the method body has completed. The propagation target’s object’s configuration

history will therefore be updated after the object state has been changed. As a result,

the propagation is not necessarily atomic with the body of the method.5 This can result

in the configuration history for an object briefly not reflecting the current state of the

object. Unfortunately, it is impossible for Staccato to automatically incorporate the

propagation operation into a synchronization scheme for a method. This limitation did

not prevent us from effectively finding bugs and did not admit any false positives.

The association of configuration histories with program values requires that two log-

ical values with distinct configuration histories must have unique identities. This restric-

tion means that Staccato interacts poorly with memoization or singleton objects, as two

or more logically separate configuration histories may be conflated in the same program

value. This was primarily a problem for literal strings and enumeration variants. All

occurrences of the same string literal and enumeration variant within a single JVM in-

5If the method is marked as synchronized, the propagation is protected by the object monitor that
protects the entire method body.

36

stance have the same object identity. For literal strings, boolean options were particularly

problematic: boolean configuration values were almost always stored using the literals

"true" and "false". Staccato conservatively performs a deep-copy when it detects it

would otherwise propagate configuration history to a string literal or enumeration.

However, copying enumerations will break a program that relies on the referential

equality between two enumeration variants with the same name. To work around this,

unboxing operations are added to equality tests that involve enumerations. Unboxing

restores a copied enumeration back to the original singleton object for purposes of com-

parison. This unboxing imposes non-trivial overhead and the programmer must opt-in

to this mechanism.

Finally, incorrect annotations by users can produce incorrect analysis results. Over-

annotating can lead to false positives. However, these false positives reveal where the

programmers assumptions (expressed in his/her annotations) about how a program

handles DCU are incorrect. Under-annotation results in bugs being missed, but existing

analyses that track the flow of configuration values, e.g. Lotrack [120], and ConfAna-

lyzer [157], can help guide the user to the correct annotations. This limitation is inherent

and would require a user-study to measure the extent of the problem in practice.

2.6 Evaluation

Having defined our approach to finding bugs in dynamic software configuration, we

present our evaluation of Staccato’s effectiveness. In evaluating Staccato, we were

interested in the following 4 questions:

1. Does software with dynamic configurability have violations of our correctness con-

ditions?

2. How effective is Staccato at finding these errors?

3. For some real applications, what is the annotation burden of using Staccato?

37

4. What is the performance impact of using Staccato?

We focused our evaluation on open-source applications with high-levels of run-time

configurability. We chose three projects of substantial size but approachable complex-

ity: Openfire (version 3.9.3),6 a full featured chat server that implements the XMPP IM

protocol, JForum (version 2.1.8),7 a widely deployed forum software, and Subsonic (ver-

sion 5.2.1),8 a music streaming server. All projects have many configuration options and

extensively use concurrency.

We did not perform an exhaustive evaluation on Solr as the code-base was close to

500,000 SLOC, considerably larger than our next largest evaluation target (Openfire).

No technical limitation prevents using Staccato on Solr: the instrumentation process

and dynamic analysis scale independently of code-base size. However, using Staccato

requires understanding a code-base and 500,000 lines felt beyond what we could reliably

do ourselves. We did perform an informal evaluation on Solr where we tried to detect

the bug mentioned in the introduction using Staccato. We needed only a handful of

propagation annotations and one check annotation to re-find the bug. We believe, but

haven’t substantiated, that a team familiar with Solr could use Staccato without undue

burden.

Experimental setup We manually annotated each application after first becoming fa-

miliar with the code-base and how the software uses configuration values. We also

integrated each software’s configuration abstraction with the Staccato runtime.

We were unable to find extensive functional tests for any of the projects. We de-

veloped our own functional tests for each of the three software projects. Due to the

differences in the software under evaluation, we had to use different evaluation tech-

6http://www.igniterealtime.org/projects/openfire/index.jsp
7http://jforum.net/
8http://www.subsonic.org/pages/index.jsp

http://www.igniterealtime.org/projects/openfire/index.jsp
http://jforum.net/
http://www.subsonic.org/pages/index.jsp

38

niques depending on the software. For Openfire, we used Tsung9 version 1.4.2. For

JForum and Subsonic we used Apache JMeter10 version 2.12. We developed test plans

in these tools that exercised core functionality of each software (these tests are included

in the Staccato distribution). Each functional test client executes in a loop. On each

iteration of the loop, a test clients sleeps for a short, randomly selected period of time

and then performs a randomly selected test action. These test actions were prepared by

us and were designed to use one piece of the core functionality of the software under

test. For example, one of the test actions for JForum involves sending a private message

from one user to another.

To induce configuration errors, we also developed a havoc mechanism. This havoc

mechanism consists of several test clients that execute alongside the functional test

clients. Each havoc client executes in an infinite loop. During each iteration of the loop,

the havoc client sleeps for a short, randomly selected period of time and then performs

a mutation to the software’s configuration. This mutation was done by simulating an

HTTP request to the administrative webpages of the software under test. These admin-

istrative webpages also validated our havoc updates (e.g., by rejecting attempts to select

negative port numbers). The havoc clients were also restricted to choosing mutations

that we had manually prepared in consultation with the program code and documen-

tation. Any errors reported by Staccato during testing were logged for collection. We

report our findings from these experiments in Section 2.6.3.

We evaluated the performance impact of Staccato along two dimensions, slowdown

and memory overhead. To calculate the slowdown, we ran each software’s test suite

on the instrumented and uninstrumented versions 5 times each and measured response

times. Before collecting any data we ran a shorter version of each project’s test suite

to control for the effects of JIT compilation and application-specific startup actions. We

disabled the havoc mechanism during performance testing, as the high rate of configu-

9http://tsung.erlang-projects.org/
10http://jmeter.apache.org/

http://tsung.erlang-projects.org/
http://jmeter.apache.org/

39

ration updates (several times per second) is not realistic for measuring performance. To

measure the memory overhead of Staccato, we ran the same test suites (again with a

brief warmup period) and used Java’s JMX technology to monitor the program’s memory

usage. We sampled the JVM’s reported memory usage at one second intervals. Before

taking each measurement we triggered a garbage collection.

All experiments were run on a Dell Latitude E-5440 with a 4 core Intel Core i5 pro-

cessor at 2.00 GHz and with 16GB of RAM. We used version 1.7.0-91 of the OpenJDK

JVM.

2.6.1 Summary

The annotation burden of using Staccato is extremely low: the ratio of annotation to

SLOC is below 1%. Even including changes to integrate with Staccato and update

handlers, we found that the effort needed to use Staccato in a project is minimal.

Further, Staccato was able to accommodate most configuration options of interest and

use patterns in the projects that we evaluated.

We found DCU errors in all of our evaluation targets, despite widely different ap-

proaches to configuration management and multithreading. Many of the DCU errors

that we found were violations of the staleness condition caused by two concurrent con-

figuration updates. Two of the projects we evaluated with Staccato also had DCU errors

that could occur in a single-threaded context, indicating that DCU errors are not just the

result of insufficient testing of multithreaded software. We encountered only one false

positive during our analysis.

Staccato imposed a moderate performance penalty in our tests; we measured a

maximum overall slowdown of 5.30x and a memory overhead of at most 144.40%. This

is overhead low enough to use Staccato as a bug-finding tool in pre-deployment. Our

experience suggests combining Staccato with an automated havoc test like those used

in our evaluation can be an effective technique for finding DCU errors. Staccato’s

40

Project Annot. Flow Repair CB Bug-Fixes Conf-Abs. Total SLOC

Openfire 100 184 451 78 212 1,025 85,416

JForum 11 44 13 2 29 99 29,568

Subsonic 13 52 0 0 118 183 29,592

Table 2.1: Counts of lines changed to integrate with Staccato. Annot. counts explicit

check and propagation annotations. Flow are changes to calling conventions, the intro-

duction of helper methods, or the use of wrapper classes for integration with Staccato.

Repair CB are repair callback code. Bug-Fixes are fixes for concurrency bugs in the

project. These consist primarily of field accesses that were not well ordered according to

the Java Memory Model [135]. Conf-Abs. are changes to integrate the project’s config-

uration abstraction with the Staccato runtime. SLOC counts the total source lines of

code in the original, uninstrumented project.

overhead makes it unlikely that the repair mechanisms described in Section 2.4 can be

used in production. However, a developer can use Staccato’s repair mechanisms to

rapidly develop DCU implementations or fixes. From an initial implementation using

Staccato, a programmer can develop a more efficient manual solution.

2.6.2 Integration Effort

As a proxy for programmer effort, we measured the number of line changes necessary

to integrate Staccato with each of our evaluation targets. We count explicit propa-

gation and checking annotations as well as lines changed to integrate the software’s

configuration abstraction with Staccato’s runtime, changes to calling conventions to

ease application of annotations, and repair callbacks. The breakdown of lines changed

is shown in Table 2.1. The ratio of annotations to total lines for each project is 0.12%,

0.04%, and 0.04% for Openfire, JForum, and Subsonic respectively. Including all source

41

lines changed gives: 1.20%, 0.33%, and 0.62% for Openfire, JForum, and Subsonic re-

spectively. The relatively high percentage for Openfire can be attributed to large number

of lines added for update callbacks (column Repair CB in the table).

Qualitatively, most of our effort was spent understanding each code-base. A team

familiar with an application would be spared this effort. Adapting a program once we

understood how its dynamic configuration worked was largely formulaic. Many bugs

were found with no extra annotations as many methods are checked by default against

the consistency condition. Finding staleness violations required some manual annota-

tion. However, recall that annotations to control checking by Staccato can be applied

to an entire class. Thus, when we added annotations for finding staleness violations, no

pre-existing knowledge of exact bug location was required, only an intuition that a class

encapsulated some persistent, configuration-derived state. Finally, we found most can-

didates for propagation annotations simply by inspecting configuration access sites and

determining what methods were called with the newly returned configuration values.

Checking Coverage We found that the configuration model and primitives exposed by

Staccato were sufficient to achieve good coverage of options checked in each evaluation

target. Our functional tests exercised between 25%–86% of options in our evaluation

programs. Staccato was able to track and check all options exercised by our tests.

We measured coverage by modifying the Staccato runtime to record the options

checked by Staccato and the correctness condition being checked. We also recorded

which options were read or updated during test execution. Options not involved in at

least one update operation are not counted for coverage purposes. Uses of these options

were trivially validated by Staccato but are uninteresting for evaluation purposes. Op-

tions that were updated but never re-read are included; Staccato still validated that old

copies of the option were used consistently and did not cause violations of the consis-

tency condition.

In all tests, every configuration option mutated by the havoc mechanism was checked

42

at least once. This result indicates that our approach accurately models the configura-

tion updates of the evaluation programs. Across all projects, most options were checked

against the consistency condition rather than the staleness condition. However, all pro-

grams used checks for staleness at least once. Openfire and Subsonic both used the

condition to find bugs and JForum used staleness checking in combination with repair

to add support for configuration updates.

Our tests exercised only a representative set of options for each program in our eval-

uation. There is no restriction other than annotation and test development effort pre-

venting 100% coverage of options. We felt that achieving full coverage in our tests would

provide low marginal benefit for the amount of effort required. For example, we did

not test the configuration options that control Openfire’s operation in multi-server clus-

ters. An overview of which options we checked during our evaluation is presented in

Table 2.2. We calculate the coverage of our tests as:

Checked+Update

Checked+Update+Untested+ Internal

Coverage for our evaluation set is 25.14% 86.36% and 68.75% for Openfire, JForum, and

Subsonic respectively. Openfire’s relatively low coverage is due to the high number of

options available in that program. Some of these options (counted in column Untested)

controlled functionality that was difficult to test automatically or that required complex

test environments (e.g., multi-server cluster options). We also excluded many undocu-

mented options available in Openfire that cannot be set via normal means (counted in

column Internal).

2.6.3 Effectiveness

Table 2.3 summarizes the errors that we found in our three evaluation targets. In every

evaluation target, Staccato found multiple dynamic configuration update errors. In

total, Staccato discovered 20 errors across the three evaluation programs. The most

common bugs are staleness violations that occur when two concurrent configuration

43

Project Checked Update Imm. Int. Other Untested Total Cov.

Openfire 24 21 68 73 4 61 251 25.14%

JForum 37 1 3 0 0 6 47 86.36%

Subsonic 33 0 0 0 0 15 48 68.75%

Table 2.2: Classification of options available in each application and coverage of our

functional test suite. Checked counts options checked during our tests. Update are

options updated using Staccato’s repair mechanism. The next 3 columns count options

not included in our tests. Imm. are immutable and therefore uninteresting for our

evaluation. Int. are internal, undocumented options for which we lacked sufficient

domain knowledge of the software. Other are options that were untestable because of

missing proprietary technology or update mechanisms with unfixable concurrency bugs.

Untested are all remaining options not exercised by our functional tests. Cov measures

the percentage of options tested in our evaluation.

Project Stale Read Incons. Read Incons. CF

Openfire 11 0 0

JForum 0 5 0

Subsonic 1 2 1

Table 2.3: Counts of errors found by Staccato. Stale Read are violations of the staleness

condition. Incons. Read are violations of the consistency condition. Incons. CF are

violations of the consistency condition for control-flow.

44

1 public void setLogDir (String directory) {

2 Config .set("audit.log.dir", directory);

3 this. auditDir = directory ;

4 }

Figure 2.9: Simplified atomicity bug during configuration update. If two threads con-

currently execute setLogDir, the value in the auditDir field may not be the most recent

version of "audit.log.dir" option. This violates the object’s implicit invariant. Stac-

cato detects this error on subsequent reads of the auditDir field.

updates were performed. However, two of the three projects also contain errors that do

not depend on concurrency to manifest. We now discuss some example bugs found in

each evaluation target.

Openfire

All of the bugs found in Openfire were violations of the staleness condition. The most

common errors in Openfire were reads of out-of-date configuration data caused by non-

atomic configuration updates. Figure 8 shows a simplified example of the problematic

configuration update idiom behind these errors.

We also found a DCU error in Openfire that does not require a specific thread sched-

ule. The server administrator may configure, at runtime, the implementation used to

store a user’s contact list. Each user’s contact list object holds a reference to the storage

backend specified by the administrator. Staccato found that contact lists loaded before

a change to the storage backend would continue to use the old backend object. This

could cause changes made to a user’s contact list to be lost. The underlying defect was

caused by the contact list objects being cached in a static field. A sketch of this scenario

is shown in Figure 2.10.

45

1 static Map <String , ContactList > cache = ...;

2 ContactList getContactList (String user) {

3 if(cache. containsKey (user)) {

4 return cache.get(user);

5 } else {

6 ContactStorage store = getContactStorage ();

7 cache.put(user , new ContactList (user , store));

8 return list;

9 }

10 }

11 ContactStorage getContactStorage () {

12 String backend = Config .get(" contact . classname ");

13 /* reflectively instantiate the backend specified by

14 "contact.classname" */

15 }

Figure 2.10: Simplified example of contact list bug in Openfire. A stale version of the

backend specified by "contact.classname" will persist in ContactStorage objects cached

in cache.

46

Using the repair callback mechanism described in Section 2.4, we were able to in-

troduce dynamic updates for 21 options. We also added repair for 2 of the errors that

we found in our evaluation. The locking guarantees provided by Staccato allowed us

to write update callbacks that focused only on implementing the actual configuration

update and did not require us to add any extra locking. Staccato also ensured that

we did not introduce any new dynamic configuration update errors when adding this

new DCU functionality. We validated that our update code was correct by extending the

havoc mechanism to include changes to the configuration options for which we wrote

update callbacks; no errors were reported by Staccato in any of the options we tested

in this way.

JForum

JForum maintains less configurable global state than Openfire, so Staccato did not find

any violations of the staleness condition. However, Staccato found 5 violations of the

consistency condition.

Most of these errors were the result of two or more reads of the same configuration

option without any synchronization. For instance, when generating a response, JForum

reads an option twice to set two separate response parameters. The two reads are not

protected by any synchronization, and Staccato detected that a concurrent update of

the option would yield an inconsistent response. The single false positive found during

our evaluation occurred under similar circumstances. JForum reads a single option twice

(again, without synchronization), except that both reads populate the same response

parameter. Staccato was unable to detect that the second write overwrote the first,

concealing any inconsistency.

One of the consistency errors Staccato discovered caused JForum to mislabel the

encoding used in an HTTP response. Finding this error involved tracking object depen-

dencies at a level not possible with just primitive value dependencies. The bug is caused

47

by the configuration option that controls response encoding being read twice during re-

quest handling: once in the method that generates the HTML response, and in another

method that sets the response headers. Using to @StaccatoPropagate annotations, Stac-

cato was able to capture the dependencies between the encoding option, the generated

output, and the response headers.

Staccato also found a consistency error that does not rely on a specific thread sched-

ule to manifest. JForum pre-computes the URLs of emojis available on the forum and

stores the results in a cache. The emoji URLs are built using the configurable location of

the forum. However, after the forum location is updated, the emoji URLs in the cache are

not updated. The forum location is also read on each request to render the header and

footer content of each page. Staccato detected that after the forum URL is updated,

responses that include emojis contain two inconsistent versions of the forum URL.

The handful of options that control persistent state all require a restart to take effect,

indicating a conservative approach on the part of the JForum developers towards con-

figuration updates. We were able to use Staccato’s repair functionality to transparently

and safely introduce online updates for one of these options.

Subsonic

Compared to JForum and Openfire, Subsonic has little configurable global state. The

one exception was in the LDAP integration component. Subsonic caches its connection

to an LDAP server in a static field and rebuilds the connection when it detects that the

LDAP configuration has changed. A simplified form of this update algorithm is shown

in Figure 2.11. Although the getConnection method is synchronized, the method does

not synchronize with updates to the software configuration. As a result, lastChecked

may hold the most recent update time for the configuration but the ldapConnection could

contain a connection built with an old version of the "ldap-config" option. Notice that

this update idiom is very similar to the value repair scheme described in Section 2.4.2,

48

1 static LdapConnection ldapConnection = ...;

2 static Time lastChecked = ...;

3 synchronized LdapConnection getConnection () {

4 if(lastChecked < Config . lastUpdateTime ()) {

5 ldapConnection = Ldap. connect (Config .get("ldap - config "));

6 lastChecked = Config . lastUpdateTime ();

7 }

8 return ldapConnection ;

9 }

Figure 2.11: A sketch of the Subsonic LDAP connection staleness bug. In this example

Config.lastUpdateTime() returns the time of the most recent update to the configuration.

Although the update code uses synchronized, the update still contains an error. If an up-

date to the "ldap-config" option occurs between lines 5 and 6, the program incorrectly

concludes that the ldapConnection field is up-to-date.

49

although the option locks (Section 2.4.1) prevent a similar error from occurring within

our implementation.

Subsonic also contains a control-flow consistency error. A method that controls the

music play queue iterates over a list of playlist items and on each iteration checks an

option that determines if Subsonic is running behind a firewall. If this option is set,

extra processing is performed on the playlist item. Staccato flagged that if the option

was changed during an iteration of the loop, Subsonic would inconsistently process the

entire list as a result.

One final example bug found by Staccato was caused by one logical option (the

server locale) being stored across three different configuration options. The reads of

the three options where not synchronized with the update mechanism of the options.

As a result, if a read of the three locale options occurred concurrently with an update,

Staccato detected that the user would receive an invalid locale (e.g, the US version of

Japanese). Detecting this error used the consistency groups described in Section 2.3.4.

2.6.4 Performance Impact

Finally, we measured the performance impact of Staccato on our evaluation targets.

We measured two metrics: memory overhead and overall slowdown. Across all eval-

uation programs, the largest overall slowdown (averaging over test actions) was 5.30x

and memory overhead was below 2x. A graph of the slowdown results can be found in

Figure 2.12.

We calculated overall slowdown as the geometric mean of the ratio between average

response times with and without Staccato, after excluding the largest 5% of response

times as outliers. Tsung (the technology used to test Openfire) did not provide individual

response times, so we did not filter outliers when calculating Openfire’s slowdown. The

number and duration of the outliers was broadly similar with and without Staccato,

with high variance across runs.

50

800%

900%

JForum Subsonic Openfire
Application benchmarks

0%

100%

200%

300%

400%

500%

600%

Sl
ow

do
w

n
(p

er
ce

nt
 o

f u
ni

ns
tru

m
en

te
d

tim
e)

Se
ar

chPM
 S

en
d

C
ha

t 1

Figure 2.12: The average slowdowns for the evaluation applications. Each individual

bar represents the average slowdown of a single test action in the test suites we cre-

ated for the project. For example, the “PM Send” bar measures the average slowdown

experienced when sending a private message to another user on the forum. Similarly,

the “Search” and “Chat 1” bars respectively measure the average slowdown for search-

ing Subsonic’s music catalog and sending a sequence of chat messages on the Openfire

server. The overall slowdown for each application is computed by taking the geometric

mean of these average slowdowns.

51

The overall slowdown for the projects was 1.26x, 5.30x, and 2.11x for Openfire, JFo-

rum, and Subsonic respectively. This is generally competitive with other dynamic analy-

ses and is consistent with the performance reported for the Phosphor tool [17] on top of

which Staccato is built.11 The majority of extra time is spent combining configuration

histories for primitive types. History merging is performed via a relatively expensive

method call that is inserted after every arithmetic, floating point, and boolean opera-

tion. In the common case, the configuration histories being merged are empty. Although

we optimized our runtime heavily for this common case, Staccato encounters the in-

herent overhead of method calls. Staccato could be combined with a whole-program

static analysis to prune merge operations when the configuration histories involved are

provably empty.

The memory overhead of Staccato was: 110.83%, 144.40%, and 114.43% for Open-

fire, JForum, and Subsonic respectively. For each application, we calculated the memory

overhead by averaging the observed heap sizes during the instrumented test runs, and

similarly for the uninstrumented test runs. We took the ratio of these two averages to

be the total memory overhead. Most of this memory overhead is added by Phosphor for

shadowing primitive variables as noted in the Phosphor paper. Our memory overhead

is generally lower than that reported for Phosphor as we do not add tag fields uncon-

ditionally to every object as explained in Section 2.5.2. We expect that memory usage

could be improved with a static analysis to remove provably empty shadow state.

2.7 Conclusions

This chapter presented the first study of errors in dynamic configuration updates. We

approached the problem of diagnosing incorrect updates with the dynamic analysis tool

Staccato, which detects stale or inconsistent views of the software configuration. We

11The slowdown reported in the Phosphor paper is for a version that supported only integer valued tags.
Staccato is built using a more recent version that supports arbitrary tag types, which is necessarily
slower.

52

evaluated Staccato on three open-source projects and found bugs in all three. Staccato

imposes moderate performance overhead, and low annotation overhead. In the following

chapter, we complement Staccato with the static analysis Legato which obviates test

cases and runtime overhead when finding DCU errors.

53

Chapter 3

STATIC VERIFICATION OF EXTERNAL RESOURCE CONSISTENCY

3.1 Introduction

The dynamic configuration options studied in Chapter 2 are just one piece of the dy-

namic environment in which today’s programs operate. Modern applications use several

external resources, including configuration files, databases, and network resources. Fur-

ther, like dynamic configuration options, many of these external resources may change or

evolve during program execution. Remote hosts may become unavailable or change their

APIs, database entries may be changed by other threads or programs, the filesystem may

be changed by other tenants on the program’s host. We refer to these changing, evolving

resources as dynamic external resources; together, these dynamic external resources form

an application’s view of the dynamic environment in which it executes.

Dynamic external resources generalize the dynamic configuration options presented

in Chapter 2. As demonstrated in Section 2.6, handling dynamically changing configu-

ration options is difficult, and this difficulty extends to other types of dynamic external

resources. In general, if any dynamic resource is changed between two accesses used

in the same computation, a program can observe two or more inconsistent versions of

that resource’s state, which can lead to arbitrary and often incorrect behavior. Figure 3.1

illustrates contains a program fragment exhibiting a well-known time-of-check-to-time-

of-use defect [151, 22, 138] that can lead to a malicious user circumventing filesystem

permissions. The attack is possible precisely because the code in question can observe

two versions of the filesystem state: specifically, two different versions of the read per-

mission. Such issues are not restricted to filesystems; similar problems can be found in

applications that interact with databases with multiple users [13] or that support instan-

54

1 if(hasReadPermission (" harmless_file ")) {

2 open(" harmless_file "). read ();

3 }

Figure 3.1: Example time-of-check-to-time-of-use bug caused by a dynamic resource

update: if "harmless_file" is replaced with a symlink to another user’s file after the

permissions check but before the open() call, a leak of another user’s private information

will occur.

taneous configuration updates as shown previously in Chapter 2.

Further complicating matters, external resources are often mutated by other programs

or users of the system without warning and it is often impossible for the application to

prevent such changes. For example, in Staccato’s DCU setting, configuration updates

are frequently performed by one thread concurrently updating the program’s config-

uration without coordinating with other threads. Due to the unpredictability of these

changes, errors due to dynamic resource updates are difficult to anticipate, and (like

concurrency errors) require difficult-to-write functional tests to manually uncover. Fur-

ther, although the example shown in Figure 3.1 can be detected with a simple syntactic

analysis, the dynamic resource errors we have found in practice often involve multiple

levels of indirection through the heap and flows through multiple method calls. There

has been extensive work to help programmers contend with and correctly handle these

changes [20, 138, 36, 21]. However, existing techniques take a piecemeal approach tai-

lored to a specific resource type (e.g., files [151, 22], our own approach to configuration

options in Staccato, etc.).

This chapter presents a unified static approach to verify that programs always observe

consistent versions of external resource state. This work complements the Staccato

analysis with an approach for detecting consistency errors in a more general problem area.

55

Key to our approach is the at-most-once condition. The at-most-once condition states

that a value may depend on at most one access of each external resource. Intuitively,

programs observe inconsistent resource states when a resource changes between two or

more related accesses of a resource. By restricting all computations to at most one access

per resource, the condition guarantees that every value computed by the program always

reflects some consistent snapshot of each resource’s state.

We efficiently check this condition for complex, real-world programs using a novel

static analysis. Conceptually, our analysis versions the external resources accessed by a

program such that each read of a resource is assigned a unique version. Our analysis

tracks these versioned values as they flow through the program and reports when two or

more distinct versions flow to the same value. Although our analysis focuses on errors

caused by concurrent changes, it does not explicitly reason about concurrency involving

external updates. Our analysis is interprocedural and scales to large programs. The anal-

ysis is flow-, field-, and context-sensitive, and can accurately model dynamic dispatch.

We implemented the Legato
1 analysis as a prototype tool for Java programs. We eval-

uated Legato on 10 real-world Java applications that use dynamic resources. These ap-

plications were non-trivial: one application in our evaluation contains over 10,000 meth-

ods. Legato found 65 bugs, some of which caused serious errors in these applications.

Further, we found that the at-most-once condition is a good fit for real applications that

use external resources: violations of the at-most-once condition reported by our analy-

sis often corresponded to bugs in the program. Legato had a manageable ratio of true

and false positives. Our tool is also efficient: it has moderate memory requirements, and

completed in less than one minute for 6 out the of 10 applications in our benchmark suite.

In summary, this chapter makes the following contributions:

• We define the at-most-once condition, a novel condition to ensure consistent usage

of external resources (Section 3.2).

1Legato is open-source, available at https://github.com/uwplse/legato

https://github.com/uwplse/legato

56

1 int getDoubled () {

2 return Config .get(" number ") +

3 Config .get(" number ");

4 }

Figure 3.2: Example of inconsistency

due to dynamically updated configura-

tion options. If the "number" configu-

ration option changes between the two

calls to Config.get(), a non-even number

may be returned.

1 int a = Config .get(" number ");

2 int b = 0;

3 while(?) {

4 b += a;

5 }

Figure 3.3: Example of a resource used

multiple times after being read. ? rep-

resents a side-effect free, uninterpreted

loop condition. This use pattern is cor-

rect because the "number" resource is

accessed only once in computing b.

• We present a novel static analysis for efficiently checking the at-most-once condi-

tion (Sections 3.3 and 3.4).

• We describe Legato, an implementation of this analysis for Java programs (Sec-

tion 3.5).

• We show that Legato can find real bugs in applications that use dynamic resources

(Section 3.6).

3.2 At-Most-Once Problems

Legato targets programs that use dynamic external resources. Unlike static program re-

sources (e.g., program code, constant pools, etc.) dynamic resources are statically iden-

tifiable entities that may be changed without warning by code or programs outside of

an application’s control. In the presence of external changes, programs may observe

inconsistent versions of an external resource’s state.

57

For example, Figure 3.2 shows a (contrived) example of an error due to dynamically

updated configuration options similar to the one presented in Figure 2.2. Although

callers of getDoubled() would reasonably expect the function to always produce an even

number, an update of the "number" option between the two calls to Config.get() may

result in an odd number being returned. This inconsistency mirrors the unexpected

mixing of verbs in the phrase returned by handleSpotRequest() in Figure 2.2. This un-

expected behavior occurs because the application observes inconsistent versions of the

"number" option. The time-of-check-to-time-of-use error in Figure 3.1 from the introduc-

tion is another example.

One possible technique for statically detecting these errors is to concretely model

dynamic resource updates and reason explicitly about update/access interleavings. Un-

fortunately, explicitly modeling concurrency, e.g., [41, 19, 40], is intractably expensive on

large programs or requires specific access patterns [121, 124].

Legato instead verifies consistent usage of dynamic resources without explicitly rea-

soning about concurrent updates and reads. In the worst case, a resource may change

between every access; i.e., every access may yield a unique version of the resource. For

example, suppose that the configuration accessed in Figure 3.2 is updated by another

thread in response to user input, as was the case in Staccato’s evaluation programs. In

the presence of non-deterministic thread scheduling and without prior synchronization

between the two accesses of "number" on lines 2 and 3, the option may be updated some

arbitrary number of times. The current implementation of getDoubled correctly handles

updates that occur before or after the two accesses: only interleaved updates are prob-

lematic.

A key insight of Legato is that a program that is correct under the worst-case re-

source update pattern described above will necessarily be correct under any update pat-

tern. Further, under the assumption that every access yields a distinct version of the

underlying resource, values from two or more different accesses of the same resource

can never be combined without potentially yielding an inconsistent result. It is therefore

58

sufficient to verify that a value depends on at most one access to each resource. Verifying

this condition for all values in a program is the at-most-once problem.

The at-most-once problem places no restrictions on the number of times a resource

may be used once read, nor how many times a resource may be accessed, only on how

many times the resource may be accessed in computing a single value. For example,

the code in Figure 3.3 is correct according to our definition of at-most-once. When the

"number" option is read on line 1 it reflects a single, consistent version of the option at

the time of read. Although "number" may be updated an arbitrary number of times as

the loop executes, the value of a is unaffected by these updates and remains consistent

as it is used multiple times during the execution of the loop. As a result, after the loop

finishes, the value of b will reflect a consistent version of the "number" option. If the

body of the loop was b += Config.get("number"), the at-most-once requirement would be

violated.

The at-most-once condition is clearly related to and informed by the consistency

condition developed for Staccato. The consistency condition of Staccato is defined

over particular dynamic executions of a program, and can admit executions that include

multiple correlated accesses to the same resource provided that there are no intervening

updates. In other words, Staccato’s consistency condition is implicitly stated with

respect to a concrete update schedule. In contrast, the at-most-once condition is agnostic

to any particular update ordering and must therefore account for all possible update

patterns. As a result, it is more conservative and may rule out programs that could be

correct under all real-world update patterns.

3.3 The Legato Analysis

Legato is a whole-program dataflow analysis for detecting at-most-once violations in

programs that use dynamic resources. For ease of presentation, throughout the rest of

this chapter, we assume that there is only one resource of interest that is accessed with

the function get(). The analysis described here naturally extends pointwise to handle

59

multi-resource scenarios. Conceptually, the analysis operates by assigning a globally

unique, abstract version to the values returned from each resource access. If two or

more unique versions flow to the same value, this indicates that a resource was accessed

multiple times, thus violating at-most-once.

In a dynamic setting, every read of a resource can be tagged with an automatically

incrementing version number. With this approach, detecting violations of at-most-once

is straightforward: when two or more different version numbers reach the same value,

at-most-once must have been violated. This approach is very similar to the Staccato

analysis, except in place of updating version numbers in response to resource updates

the version numbers are incremented on each access. However, concrete version numbers

cannot be translated into the static setting without sacrificing termination or precision.

In place of concrete numbers, resource versions can be abstractly represented by the

site at which a resource was accessed and the point in the program execution that the

resource access occurred. The presence of uninterpreted branch and loop conditions

makes it impossible to determine the absolute point in a program execution at which a

resource access occurs. Instead, Legato uses abstract resource versions (ARVs) to encode

accesses relative to the current point in the program execution. For example, an ARV

can represent “the value returned from the 2
nd most recent execution of the statement

s”, which precisely identifies a single access while remaining agnostic about the absolute

point in the program execution the access occurred.

The Legato analysis combines a reachability analysis with the abstract domain of

ARVs to discover which resource versions flow to a value. The ARV lattice is designed

such that the meet of two ARV representing different accesses (and therefore versions)

yields ⊥, which indicates a possible violation of at-most-once.

We first present a simple intraprocedural analysis that does not support loops, heap

accesses, or method calls (Section 3.3.2). We then extend the approach to handle loops

(Section 3.3.3). The transformers defined by these two sections illustrate the core Legato

analysis. In principle, this basic analysis could be extended to extremely conservatively

60

handle language features, such as the heap or methods. However, in practice, doing so

would result in enormous precision loss. We therefore show how we extend the analysis

to field- and flow-sensitively handle information flow through the heap (Section 3.3.5).

Extending the analysis to precisely handle method calls is non-trivial, and is discussed

in Section 3.4. Other program features (e.g., exceptions, arrays, etc.) are straightforward

extensions of the ideas presented here.

Abstract Resource Versions As mentioned above, an abstract resource version (ARV)

represents a resource version by the access site and the point in time at which the access

was performed. To ensure soundness, values returned from different resource accesses

must be assigned unique ARVs (we expand on this point further in Section 3.3.4). In

a simple language with no loops or methods, ARVs are simply expression labels: each

label represents the unique value produced by the execution of the labeled expression. In

the presence of loops, we augment these labels with a priming mechanism to differentiate

between multiple executions of the same expression. To precisely handle methods, in

Section 3.4.1 we generalize to strings of primed labels, which identify an access by the

sequence of method calls taken to reach an access site (similar to the approach taken by

[193]). Finally, in Section 3.4.2, we further generalize ARVs to sets of strings (represented

as tries) to encode multiple possible accesses that may reach a program value. However,

even with this representation, our analysis always maintains the invariant that each ARV

abstracts a single, unique resource access.

3.3.1 Preliminaries

Before describing the analysis, we first briefly review some relevant background infor-

mation.

IDE The Legato analysis uses the IDE (Interprocedural Distributive Environment)

program analysis framework [166]. The IDE framework can efficiently solve program

analysis problems stated in terms of environment transformers. An environment is a map-

61

ping from dataflow symbols (e.g., variables) to values. The domain of symbols must be

finite, but the domain of values may be infinite, provided the values form a finite-height,

complete lattice. The meet of environments is performed pointwise by symbol. IDE

analyses assign environment transformers to edges in the program control-flow graph.

However, to aid exposition, throughout the remainder of this section we will instead

denote statements into environment transformers.2

The IDE framework targets a specific subclass of analyses where the environment

transformers distribute over the meet operator on environments. That is, for all trans-

formers t : Env → Env and all environments e1, e2, . . . , en,
d
i t(ei) = t(

d
i ei), where

equality on environments is defined pointwise. Given a set of distributive environment

transformers, the IDE framework produces a flow and context-sensitive analysis with

polynomial time complexity.

Access Paths An access path [63, 99] is an abstract description of a heap location. An

access path consists of a local variable v, and a (potentially empty) sequence of field

names f.g.h . . . Together, these two elements name the location reachable from v through

fields f,g,h, . . . We will write ε to represent an empty sequence of fields, π to refer to

an arbitrary (potentially empty) sequence of fields, and v.π to denote an arbitrary access

path.

3.3.2 The Basic Analysis

We first present our analysis on a limited language described by the grammar in Fig-

ure 3.4. Every call to get() is uniquely labeled with `: we will write concrete labels as

1, 2, etc. Our basic language contains no looping constructs, as a result every get() ex-

pression is executed at most once. Thus, every access can be uniquely identified by the

label of a get() expression. For this language, the abstract resource versions are get()

2This change in presentation does not change the behavior of the analysis; the denotation of a
statement is a simplification of the meet of the composition of the edge transformers for all paths
through a statement.

62

(const) c ::= 0 | 1 | . . .

(var) v ::= a | b | . . .

(atom) a ::= c | v

(expr) e ::= a + a | a | get`()

(stmt) s ::= v = e | s ; s | skip

| if a then s1 else s2

Figure 3.4: Grammar for the loop-, and

method-free language.

Statement Transformer

Jv1 = v2K , λe.e[v1 7→ e(v2)]

Jv = cK , λe.e[v 7→ >]

Jv1 = v2 + v3K , λe.e[v1 7→ e(v2)u e(v3)]

Jv = get`()K , λe.e[v 7→ ̂̀]
JskipK , λe.e

Jif a then s1 else s2K , λe.(Js1Ke)u (Js2Ke)

Js1 ; s2K , λe.Js2K(Js1Ke)

Figure 3.5: Environment transformers of

the basic analysis.

expression labels: ̂̀ represents the unique version of the resource returned by the corre-

sponding get`() expression. Further, at this point the analysis operates on access-paths

with no field sequences: we abbreviate v.ε as v.

The basic Legato analysis is expressed using the environment transformers in Fig-

ure 3.5. Conceptually, for a program s, the analysis applies the empty environment (i.e.,

all facts map to >) to the transformer associated with statement s. Thus, the analysis

result is given by JsK (λ .>). The analysis is standard in its handling of several language

features. For instance, sequential composition of statements is modeled by composing

environment transformers, and conditional statements are modeled by taking the meet

of the environments yielded from both branches.

The interesting portion of the analysis lies in the handling of variable assignments.

Assignments overwrite previous mappings in the environment of the left-hand side with

the abstract value of the right-hand side. Integer constants are never derived from re-

sources, and therefore have the abstract value >, which represents any value not derived

63

from a resource. The statement v1 = v2 associates v1 with the abstract version contained

in v2. A resource access of the form get`() has the abstract value ̂̀ which, as discussed

above, is sufficient to uniquely identify the value returned by the access. This simplified

version of the Legato analysis is very similar in style to a constant propagation analysis,

where in place of integers or booleans, the constants of interest are abstract resource

versions.

Values may become inconsistent for two reasons. The first is due to the addition

operator. The expression v1 + v2 is given the abstract value e(v1) u e(v2). The meet

operator for these ARVs is derived from a flat lattice:

>u x = x xu⊥ = ⊥ îu î = î îu ĵ = ⊥, if i 6= j

where i and j are two arbitrary labels. If e(v1) = î and e(v2) = î, then the result of the

addition still depends only on the resource accessed at geti(). In this case, at-most-once

is not violated, and the meet yields î as the abstract value of the addition expression.

However, if e(v1) = î and e(v2) = ĵ then the program is combining two unique versions of

the resource, which violates at-most-once. The meet of these two incompatible versions

yields ⊥, which is the “inconsistent” value in the lattice. An example of this behavior is

show in Figure 3.6.

Finally, a variable may be assigned ⊥ due to Legato’s conservative handling of con-

ditional statements. Recall that the environments produced by the two branches of a

if statement are met at the control-flow join point of the conditional. Thus, if a vari-

able x is mapped to two distinct, non-⊥ values in environments produced by different

branches of a conditional, those values will be met yielding ⊥. In this case, the result of

⊥ does not correspond to a violation of at-most-once, and is a false positive. The alter-

native, full path-sensitivity, is unacceptably expensive. We do support a limited form of

path-sensitivity to precisely model dynamic dispatch (Section 3.4.2).

64

1 a = 1; // a: >

2 b = get1(); // b: 1̂

3 c = get2(); // c: 2̂

4 d = a + b; // d: 1̂

5 e = c + d; // e: ⊥

Figure 3.6: Results of the basic analy-

sis. The comments on each line show

the abstract value assigned to the vari-

able assigned on that line.

1 while ? do

2 b = a; // a: 1̂, b: 1̂

3 a = get1() // a: 1̂, b: 1̂ ′

4 end

5 c = a + b; // c: ⊥

Figure 3.7: Example of priming due to

loops. The abstract values shown in

comments are derived after executing

the loop once. On line 3 Legato primes

the abstract value of b to distinguish it

from the fresh value returned by get1().

3.3.3 Loops

The simple analysis presented so far is no longer sound if we extend the language with

loop statements:

stmt ::= . . . | while a do s end

If a get`() expression is in a loop, each evaluation of get`() must be treated as returning a

unique version. However, the transformers presented in the previous section effectively

assume get`() always returns the same version. We therefore extend the transformers

and lattice to distinguish resource accesses from distinct iterations of an enclosing loop.

In a dynamic setting, we could associate every resource access get`() with a concrete

counter c` incremented on every execution of get`(). In this (hypothetical) scenario,

get`() yields the abstract version, 〈`, c`〉: by auto-incrementing c` the analysis ensures

executions of get`() from different iterations are given unique abstract versions.

This straightforward approach fails in the static setting: without a priori knowledge

about how many times each loop executes, the analysis would fail to terminate. We

65

introduce priming to address this issue. A primed get() label ̂̀n represents the n+ 1th

most recent resource access at get`(). For example, 1̂ ′′ (i.e., 1̂2) represents the unique

value produced by the third most recent evaluation of get1(), and 2̂ (i.e., 2̂0) is the value

returned from the most recent evaluation of get2(). Abstract versions with the same base

label but differing primes are considered unique from one another in the lattice, i.e.,

în u ĵm = ⊥ ⇐⇒ i 6= j∨m 6= n. Thus, this domain distinguishes between accesses at

different get() expressions as well as different invocations of the same get() expression.

The syntactic structure of loops are handled using a standard fixpoint technique. The

addition of loops changes how v = get`() statements are handled in the analysis. As

before, the variable v is assigned the abstract value ̂̀. In addition, a prime is added to

all existing abstract values with the base label `. We extend the environment transformer

for the v = get`() case in Figure 3.5 as follows:

λe.λv ′.


̂̀ if v = v ′ (3.1)̂̀n+1 if e(v ′) = ̂̀n (3.2)

e(v ′) o.w. (3.3)

In other words, the v = get`() statement creates a new environment3 such that:

1. v maps to ̂̀, i.e., the most recent version returned from get`()

2. Variables besides v that map to the base label ` have a prime added, indicating

these values originate one more invocation of get`() in the past

3. All other variables retain their value from env

A program illustrating this behavior is shown in Figure 3.7.

Termination It is reasonable to wonder if the above environment transformer will add

primes forever, i.e., our analysis may not terminate. We can easily show that the analysis

3Recall that an environment is a mapping of symbols (in this case, variables) to abstract values: the
function term λv ′. · · · is such an environment.

66

will converge by observing that the lattice of primed labels is of finite height (albeit

infinite width, as infinitely many primes may be added to a single base label) and then

appealing to the termination argument of the IDE algorithm. However, this argument

does not provide a good intuition behind why our analysis terminates in practice. We

therefore provide an intuitive explanation behind the termination of our analysis.

Let us consider the simple case with a single loop and one call to get() labeled `.

Variables that are definitely not assigned a value from get`() will not be primed and

therefore do not affect achieving fixpoint. For variables to which get`() may flow, the

flow occurs along some single chain of assignments, e.g. a = get`(); b = a; c = b; ... If

instead the assignment occurred along multiple possible chains, the conservative han-

dling of conditionals will yield ⊥, ensuring the analysis achieves fixpoint.

Consider now the case where some assignments in the chain occur conditionally, e.g.:

1 while ? do

2 if ? then b = a else skip;

3 a = get1()

4 end

where ? represents uninterpreted loop and branch conditions. In this example, b receives

the value of some arbitrary previous invocation of get1(). Our domain of primed labels

cannot precisely represent this value, but the analysis will conservatively derive ⊥ for b,

again ensuring the analysis achieves fixpoint. After two iterations of the analysis, two

possible values for b, 1̂ and 1̂ ′, will flow to line 3 from the two branches of the conditional

on the previous line. The meet of these two values is ⊥.

The last case to consider in the single loop case is a chain of definite assignments from

get`() to some variable v. For some chain of length k, it is easy to show that the resource

will propagate along the chain in at most k analysis iterations. Thus, the resource will

flow over the get() expression at most k times, and receive at most k primes. After fully

propagating along the chain, the value in v will not receive further primes: on further

iterations of the analysis the value in v is killed by the previous definite assignment in

67

the chain.

Finally, we consider nested loops. As a representative case, consider the following

scenario:

1 while ? do

2 b = a;

3 while ? do a = get1() end

4 end

After the first pass through the outer-loop, the environment produced is [a 7→ 1̂]. On the

second pass, the environment that reaches line 3 is [a 7→ 1̂, b 7→ 1̂]. One further iteration of

the inner-loop produces [a 7→ 1̂, b 7→ 1̂ ′]. The meet of this environment with the previous

input environment on line 3 assigns b the value ⊥, ensuring a fixpoint is reached.

We could have enforced termination by artificially limiting the number of primes on a

label to some small constant k. However, we decided against choosing an a priori bound

for the number of primes lest this bound introduce false positives. However, we found in

practice we needed at most 2 primes for the programs in our evaluation set. This finding

is consistent with Naik’s experience with abstract loop vectors [145], which are similar

to our priming approach.

3.3.4 Soundness

We have proved that the core analysis presented is sound. We first defined an instru-

mented concrete semantics that: 1) assigns to each value returned from get() a unique,

concrete version number, and 2) for each value, collects the set of concrete resource ver-

sions used to construct that value. The concrete semantics considers only direct data

dependencies when collecting the versions used to construct a given value. We define

soundness in relation to these concrete semantics. The Legato analysis is sound if,

whenever variable is derived from multiple concrete versions in any execution of the

instrumented semantics, the analysis derives ⊥ for that variable. As our concrete se-

mantics uses only direct dependencies for collecting version numbers, our soundness

68

claim is only with respect to such dependencies and ignores information propagated via

control-flow. We discuss this reasons for this choice further in Section 3.5.5.

Our proof of soundness relies on a distinctness invariant: two variables have different

abstract resource versions if they have different concrete version numbers under the

concrete semantics. In other words, when two variables have the same abstract version,

they must be derived from the same resource access in all possible program executions.

Thus, the invariant ensures that when values derived from different concrete resource

versions are combined by a program, the analysis will take the meet of distinct abstract

resource versions yielding ⊥. The converse is also true: if two values with the same

abstract resource version are combined, then no program execution will combine two

values derived from distinct resource accesses.

The justifications given above for the environment transformers and analysis domain

provide intuitive arguments for why this invariant is maintained. The full proofs and

concrete semantics are omitted from this chapter for clarity of presentation: they are in-

cluded in Appendix A. Although our proof is stated only for the simple intraprocedural

analysis presented so far, when we extend the analysis to support methods in Section 3.4

we provide an argument for the preservation of the distinctness invariant.

3.3.5 Fields and the Heap

We now consider a language with objects and fields.

expr ::= . . . | new T | v.f

atom ::= . . . | null

stmt ::= . . . | v.f = a

A subset of the new environment transformers for the heap language are given in Fig-

ure 3.8. In this version of the language, our transformers operate on access paths with

non-empty field sequences as opposed to plain variables. These environment transform-

ers encode the effect of each statement on the heap: for example, constants, null, and new

69

Statement Transformer

Jv.f = c | nullK , λenv.env[pref(v.f) 7→ >]

Jv = null | new T | cK , λenv.env[pref (v) 7→ >]

Jv1 = v2.f K , λenv.env[pref (v1) 7→ >, v1.π 7→ env(v2.f.π)]

Jv1 = v2K , λenv[pref (v1) 7→ >, v1.π 7→ env(v2.π)]

Figure 3.8: New environment transformers for the heap. The pref (x) function yield the

set of all access paths in e with x as a prefix. In addition, all references π are implicitly

universally quantified.

expressions on the right hand side of an assignment “kill” access-paths reachable from

the left-hand side.

There are two statement forms that require special care that do not appear in Fig-

ure 3.8. First, Legato handles assignments with a get() right-hand side with the en-

vironment transformer from Section 3.3.3 extended to support access paths instead of

variables. For an assignment of the form v = get`(), Legato uses the following trans-

former:4

λe.λ〈v ′.π〉.


̂̀ if v ′ = v

̂̀n+1 if e(v ′.π) = ̂̀n ∧ v ′ 6= v
e(v ′.π) o.w.

The second statement form, heap writes such as v1.f = v2, is handled conservatively.

Legato uses strong updates only for access paths with the v1.f prefix. After the heap-

write, the abstract value reachable from some access path v1.f.π is precisely the value

reachable from v2.π. However, an access path that only may alias with v1.f is weakly

updated. A weak update of the access path v3.π ′ to the abstract value ̂̀n takes the

4In our formalism, we assume that get() returns a primitive value, and thus the environment will only
contain mappings for v.ε.

70

meet of the current value of v3.π ′ with ̂̀n. Given the definition of the label lattice, this

treatment of weak updates means that an access-path v.π “updated” via aliasing cannot

be updated at all: the new value must exactly match the existing value of the access-path

or the access-path may have no value at all, represented by >.

Formally, Legato assigns a heap write statement v1.f = v2 the environment trans-

former:

λe.λ〈v.π〉.


e(v2.π ′) if v.π = v1.f.π ′

e(v2.π ′)u e(v.π) if v.π 6= v1.f.π ′ ∧ mayAlias(v.π, v1.f.π ′)

e(v.π) o.w.

Resolving the mayAlias query is an orthogonal concern to the Legato analysis. In our

implementation we use an off-the-shelf, interprocedural, flow- and context-sensitive may

alias analysis (Section 3.5.1).

3.4 Interprocedural Analysis

The interprocedural version of Legato is a non-trivial extension of the intraprocedural

analysis from the previous section. There are two main extensions to the core analysis.

First, Legato soundly accounts for transitive resource accesses. A transitive resource

access refers to when a method m() returns the result of an invocation of get`(); the

analysis must distinguish between abstract values produced by separate invocations of

m(). In addition, to analyze realistic Java code, Legato precisely models dynamic dis-

patch. If a method call site m() may dynamically dispatch to one of several possible im-

plementations, Legato soundly combines the unique abstract values returned by each

implementation without sacrificing precision.

Definitions For presentation purposes only, we make the initial simplifying assump-

tion that all methods are static (i.e., all call sites have one unique callee), a method has a

single formal parameter p, all methods end with a single return statement, and method

calls are always on the right hand side of an assignment. Later in Section 3.4.2 we show

71

Transformers for a method invocation: v1 = mk(v2)→ m(p){. . .; return r}

Call-to-start Exit-to-return Call-to-return

λe.λ〈v ′.π〉

e(v2.π) if v ′ = p

> o.w.
λe.λ〈v ′.π〉



ρ(e(p.π))
if v ′ = v2

∧π 6= ε

ρ(e(r.π)) if v ′ = v1

> o.w.

λe.λ〈v ′.π〉



> if v ′ = v1

>
if v ′ = v2

∧π 6= ε

τ(e(v ′.π)) o.w.

Figure 3.9: Interprocedural environment transformers. The names of the columns corre-

spond to the transformer names in the original IDE paper [166]. ρ is a function that trans-

forms values that flow out of a method. τ transforms values propagated over method

calls. We will define these methods later in the section. The analysis allows for strong

updates to heap locations reachable from the argument of a method, although the base

variable retains its value from the caller.

how to support dynamic dispatch, and in practice our implementation supports multi-

ple arguments, multiple return points, etc. We extend the grammar for expressions and

statements as follows:

expr ::= . . . | mk(a) stmt ::= . . . | return a

All method calls are labeled: these sets of labels do not overlap with get() expression

labels. We will continue to use ` to denote an arbitrary get() expression label, and k to

denote a call site label. We will use the same notation for method call labels used in

ARVs (i.e., 1̂) as we did for get() labels in Section 3.3: context will make clear which type

of label we mean.

The interprocedural environment transformers used by Legato are mostly standard

in the mapping of dataflow symbols into and out of methods. For a method call

v1 = m(v2) to m(p){. . .}, the access-path v2.π in the calling context is mapped to p.π

in the callee method. Dataflow symbols that flow out of a method call (via heap loca-

72

1 m() {

2 while ? do a = get1() end;

3 return a

4 }

5 b = m2();

6 c = m3()

Figure 3.10: A non-trivial interprocedural resource access.

tions reachable from formal arguments, or return statements) are mapped back into the

caller environment. Finally, information local to the caller that does not flow through the

method call to m is propagated over the method call.5 Legato’s analysis is non-standard

only in how values are transformed across method boundaries. Values that flow out of

a method are transformed by the function ρ and values propagated over a method call

are transformed by τ. We define these functions in this section. The full environment

transformers are given in Figure 3.9.

3.4.1 Transitive Resource Accesses

In a language with methods, a single primed get() label is no longer sufficient to uniquely

identify a resource access at some point in time. Consider the code sample in Figure 3.10.

After line 5, the value in b comes from the most recent invocation of get1(). However,

after m is called again on line 6, the value in b comes from an execution of get1() at some

arbitrary point in the past. A single-primed label is unable to represent this situation.

Leaving the value of 1̂ in b after the second call to m is unsound, and using the ⊥ value

is imprecise. In general, transitive resource access may occur any arbitrary depth in the

call-graph.

5For readers familiar with the IDE framework, these three components correspond to the call-to-start,
exit-to-return-site, and call-to-return-site transformers respectively.

73

To precisely handle scenarios like the one in Figure 3.10, Legato generalizes the

primed label ARV into strings of such labels. Unlike a single get() label, which identifies

resource accesses relative to the current point in a programs execution, call-strings en-

code resource accesses relative to other program events: specifically, method invocations.

For example, in the above example, the abstract resource version stored in b can be pre-

cisely identified by “the most recent invocation of get1() that occurred during the most

recent invocation of m at call site 2”. The call-strings used as ARVs can precisely encode

statements of this form.

A call-string takes the form k̂1
p
· k̂2

q
· · · k̂m

r
· ̂̀n, where ̂̀ is a primed get() label and

each k̂i is a primed call site label. Call-strings are interpreted recursively; s · k̂n repre-

sents the (n+ 1)th most recent invocation of mk() relative to the program point encoded

in the prefix s. The string s · ̂̀n has an analogous interpretation. If s is the empty string,

the label is interpreted relative to the current point of execution. For example, the re-

source stored in b from Figure 3.10 can be represented by the ARV 2̂ · 1̂, which has the

interpretation given above. As in the intraprocedural analysis, two distinct call-strings

encode different invocations of a resource access, and thus their meet returns bottom.

The call-strings lattice is a constant, flat lattice, which is a natural generalization of the

lattice on individual labels:

s1 u s2 =


`n if s1 = s2 = `n

kn · s ′1 u s ′2 if s1 = kn · s ′1 ∧ s2 = kn · s ′2 ∧ s ′1 u s ′2 6= ⊥

⊥ o.w.

When a value with call-string s flows out of a method m from the invocation mk(), k̂

is prepended onto the string s. In other words, for a method call v = mk(), ρ , λs.k̂ · s.

The prepended label encodes that the access represented by s occurs relative to the most

recent invocation of m at k. The label k̂ also distinguishes transitive accesses that oc-

curred during the execution mk() from those resulting from other calls of m().

74

The intraprocedural fragment of Legato remains primarily unchanged. Transitive

resource accesses within a loop are handled with a priming mechanism similar to the

one used for get() expressions. A string with k̂ at the head that is propagated over

the method call v = mk() has a prime added to k̂. We define propagate over method

transformer as:

τ , λs.

k̂
n+1 · s ′ if s = k̂n · s ′

s o.w.

The justification for this transformation is identical to the one provided for values that

flow over get() invocations. The added prime indicates any accesses that occurred rel-

ative to mk() now originate one more invocation of mk() in the past. Recursion is treated

conservatively but does not require special handling in our analysis. Two iterations of

the analysis through a recursive cycle will generate two strings, s and s · s, the meet of

which is ⊥, ensuring fixpoint.

Soundness We now informally argue for the soundness of the above approach. Recall

from Section 3.3.4 that the soundness of Legato relies on a distinctness invariant, which

states that if two values are derived from distinct resource accesses Legato must assign

different abstract resource versions to those values. To simplify the following argument,

we will assume that only a single value is returned from the callee via a return statement

(the argument for values returned via the heap generalizes naturally from the following).

Let us assume the distinctness invariant holds for all values in the caller and callee en-

vironments, i.e., values from different invocations of get() are assigned different ARVs.

Let us then show the invariant holds after the callee returns to the caller. First, it is

immediate that the call-to-return transformer τ preserves distinctness for values in the

caller environment. Next, suppose the value returned from the callee is derived from

some resource access that occurred during the execution of the callee. To preserve the

invariant, we must then show that the returned value is given a distinct ARV in the

caller. By prepending the label of the call site and priming all ARVs that already contain

that label, distinctness is ensured.

75

3.4.2 Dynamic Dispatch and Path-Sensitivity

Legato is not path-sensitive in general; as mentioned in Section 3.3.2 the abstract value of

a variable from multiple branches are met at control-flow join points potentially yielding

false positives. A key exception is Legato’s handling of dynamic dispatch. In Java and

other object-oriented languages, a method call m() may dispatch to different implementa-

tions depending on the runtime type of the receiver object. In general, it is impossible to

predict the precise runtime type of the receiver object for every call site, so a program’s

static call-graph has edges to every possible implementation m1,m2, . . . ,mn of m at the

call site mk(). If Legato treated multiple return flows like control-flow constructs such as

if and while, the analysis would be sound but unacceptably imprecise.

Legato handles dynamic dispatch path-sensitively by aggregating results from each

distinct concrete callee into a single, non-⊥ ARV. Although the resulting ARV encodes

multiple, potentially incompatible resource accesses, Legato ensures that all accesses

represented by the ARV come from different concrete callees of a single virtual call

site. As only one concrete callee is invoked per execution of a virtual call site, only one

access represented in an ARV may be realized at runtime. Thus, combining results from

different concrete implementations into a single ARV does not allow for violations of

at-most-once.

Multiple resource accesses are represented by generalizing the call-string representa-

tion from the previous subsection into tries, which encode sets of call-strings. Leaf nodes

of the trie are labeled with primed get() labels, and interior nodes with primed call site

labels. The children of a call site node labeled k̂n represent the possible results returned

from the (n+ 1)th most recent invocation of the call site with label k. A path through the

trie implicitly defines a call-string with the same interpretation as given in Section 3.4.1.

The call-string representation of the previous subsection is a degenerate case of the trie

representation where each node has only one child.

Formally, we write k̂n · [b1 7→ t1,b2 7→ t2, . . .] to represent a call site node k̂n with

76

𝑏

෠2෠1 ෠3

෠1 ෠2

⊓

෠3

෠1

𝑏

𝑎

class C1 {
d() {
return get2();

}
}

class C2 {
d() {
return get3();

}
}

v = c.d1();

෠2

෠3

𝑎

𝜆𝑠. ෠1 ⋅ 𝑏 ↦ 𝑠 ෠3

𝜆𝑠. ෠1 ⋅ 𝑎 ↦ 𝑠 ෠2

Figure 3.11: Example of Legato’s handling of dynamic dispatch. v = c.d1() may dispatch

to either implementation in C1 or C2. The dashed lines illustrate the return flows, and are

annotated with the return flow function applied by the analysis. The two single-child

ARVs are met to produce the trie on the right. a and b are the branch ids assigned to the

callees C1.d and C2.d respectively.

children t1, t2, . . . reachable along branches with ids b1,b2, . . . The branch ids are unique

within each call site node and correspond to a potential callee. We call the branch id to

child mapping the branch map, and write M to denote an arbitrary mapping.

We extend the return transformer ρ as follows. On return from a concrete implemen-

tation mp to the call site mk(), ρ , λs.k̂ · [p 7→ s]. That is, the ARV s is extended with a

new call site root node labeled k̂ that has a single child with branch id p. In the caller,

these single-child ARVs are aggregated into a single node that represents all possible

results from each callee. Similarly, we update the function τ as follows:

τ , λs.

k̂
n+1 ·M if s = k̂n ·M

s o.w.

Combining ARVs from different invocations of the same virtual call site or different

call sites yields ⊥. To combine ARVs representing results from the same invocation of a

call site, the branch maps of the ARVs are met pointwise by branch id. As is standard,

unmapped branch ids in either map are assumed to have the value >. However, if the

77

meet of any branch is ⊥ then the entire meet operator yields ⊥. That is, a violation

of at-most-once in one possible callee yields an overall inconsistent result. An example

return flow and meet is shown in Figure 3.11. Formally, the full meet operator for trie

ARVs is as follows:

în ·M1 u ĵp ·M2 =

î
n ·M ′ if i = j∧n = p∧M ′ 6= ⊥ where M ′ = M1 uM2

⊥ o.w.

M1 uM2 =

λb.M1(b)uM2(b) ∀b ′ ∈ dom(M1)∪ dom(M2).M1(b
′)uM2(b

′) 6= ⊥

⊥ o.w.

3.4.3 Effectively Identity Flows

Prepending labeled nodes on all return flows can cause imprecision. For example, con-

sider:

1 idA(i) { return i }

2 idB(j) { return j }

3 x = get1();

4 y = id2(x)

where id may dispatch to one of idA or idB. In this example, x is assigned 1̂ and y

is assigned 2̂ · [a 7→ 1̂,b 7→ 1̂]. According to the lattice, these two values are distinct

and may not be safely combined, despite being identical. This issue arises because the

invocation of id is unnecessary to identify the resource access that flows to y, nor does

the behavior of the two possible callees of id differ. We call a scenario like the above an

effectively identity flow.

Legato handles effectively identity flows by detecting when the standard meet oper-

ator would produce ⊥, and refining the ARVs to eliminate any effectively identity flows.

Call-site nodes are added on return from a method invocationm() to either identify tran-

sitive resources accesses (Section 3.4.1) or to differentiate behavior of multiple callees at

78

m() (Section 3.4.2). Conversely, if all callees exhibit the same behavior and no transi-

tive resource accesses occur within the call m(), call site nodes added on return flow

from m() are, by definition, redundant. Legato cannot add labels on return only when

necessary to disambiguate different resource accesses. Such an approach would require

non-distributive environment transformers, which are unsuitable for use with the IDE

framework upon which Legato is built.

Based on this intuitive definition of effectively identity flows, we define a refinement

operation R, which traverses the ARV trie, and iteratively removes redundant nodes.

After the operation is complete, only the nodes and corresponding labels necessary to

either distinguish a resource access or differentiate multiple callees’ behavior are left in

the trie. We first formally define effectively identity flows (EIF) and initial refinement

operation R0 for the single dispatch case (Section 3.4.3). The definitions of EIFs and

the full refinement operation, R, for dynamic dispatch (Section 3.4.3) build upon these

definitions.

Effectively Identity Flows and Single Dispatch

As a simplification, we consider call-strings with no primes: the operations and sets

defined here can be easily extended to ignore primes on call labels. For every method

m, let AS(m) denote the set of unprimed, call site and get() labels transitively reachable

from m. Further, for each call site label k we denote the method invoked at k as CSk. A

call-string s contains an EIF if there exists a suffix k̂ · s ′ such that there exists a ĵ in s ′ such

that j /∈ AS(CSk). The existence of ĵ indicates that the ARV must have been returned out

of some method other than those called by CSk, and, by definition, the access represented

by the ARV must therefore have occurred in some method other than those called by k̂.

Thus, k̂ is irrelevant for the purposes of identifying the resource access encoded in the

ARV.

The initial refinement operation, R0, follows from this definition. Let s be a call-

79

1 id_diff1(a, b) { return a; }

2 id_diff2(a, b) { return b; }

3

4 id_same1(a) { return a; }

5 id_same2(a) { return a; }

6 v1 = get1(); v2 = get2();

7

8 r1 = id_diff3(v1 , v2);

9 r2 = id_same4(v1);

Figure 3.12: Effectively identity flows in the presence of dynamic dispatch.

string, k̂ the first label in s involved in an effectively identity flow, and ĵ be defined

as above. Finally, let s ′′ be the suffix of s that starts with ĵ (inclusive). Given these

definitions: R0(s) , R0(s
′′). The refinement operation is defined inductively: in the

base case where s contains no identity flows the refinement operation is defined to be

R0(s) , s. Intuitively, the refinement operation iteratively strips off substrings of labels

that form effectively identity flows until reaching the suffix of labels that are necessary

to distinguish the resource access.

Effectively Identity Flows and Path-Sensitivity

In the presence of ARV branching, we must extend the definition of effectively identity

flows presented above. In the single-dispatch case, call site nodes were necessary only

to precisely represent transitive accesses; nodes that did not fulfill this purpose could be

removed. In the presence of branching, a call site node may also be required to precisely

combine otherwise incompatible method call results. Thus, a call site node is part of an

effectively identity flow iff it is not required to identify accesses within a method call (as

before) and it does not differentiate two or more otherwise incompatible method results.

80

For example, consider the code sample in Figure 3.12. The call to id_diff may dis-

patch to either id_diff1 and id_diff2 and similarly id_same may dispatch to two possible

implementations. After the call to id_diff on line 8, r1 holds the ARV 3̂ · [1 7→ 1̂, 2 7→ 2̂].

The two resource accesses 1̂ and 2̂ do not occur within id_diff, but the call site node 3̂

is still necessary to differentiate the incompatible results. Therefore, the node 3̂ is not

involved in an effectively identity flow. In contrast, the value stored in r2 on line 9 is

4̂ · [1 7→ 1̂, 2 7→ 1̂]. In this case, the resource access did not transitively occur within

id_same and the call site node 4̂ is not necessary to differentiate possible results. Thus, 4̂

is unnecessary and is part of an effectively identity flow.

We define an effectively identity flow in the presence of branching as follows. Each

node encodes a finite set of strings, with each string corresponding to labels on a path

from the node to the leaves of the ARV trie. Passing through a call site node î along

branch b corresponds to îb. We will denote the set of call-strings for a node n with n\:

̂̀\ = {̂`}(
k̂ ·M

)\
=

⋃
b∈dom(M)

{k̂b · s | s ∈M(b)\}

Similarly a call-string ARV can be trivially converted into a trie ARV as follows:

Ĵib · sK , î · [b 7→ JsK] ĴiK , î

Given these definitions, an ARV contains an effectively identity flow if there exists a

call site node n = k̂ ·M that satisfies two conditions. First, every call-string k̂b · s ∈ n\

contains an effectively identity flow according to the definition in Section 3.4.3 originat-

ing at k. In other words, the call site node k̂ is unnecessary to identify any resource

accesses within the call at k. The second condition is
d
s∈n\JR0(s)K 6= ⊥. That is, after

removing the call site node k̂, it must be possible to meet the resulting ARVs without

producing a violation of at-most-once. For nodes that satisfy this condition, the full

refinement operation is: R(n) , R(
d
s∈n\JR0(s)K). The base case for nodes that cannot

81

be refined is R(n) , n. Similarly to the single-dispatch case, the refinement operation

traverses the ARV trie, stripping redundant nodes and collapsing redundant branches.

3.4.4 Application Level Concurrency

The at-most-once condition obviates reasoning about concurrent resource updates, but

Legato must still account for concurrency within an application. Legato is not sound

in the presence of data races: we assume that all mutable, shared state is accessed within

a lock protected region. Thus, outside of synchronized regions, each thread reads only

values previously written by that thread. However, within a synchronization region, a

thread may observe values written by any other thread. Legato conservatively assigns

heap locations read in synchronization regions the abstract version ̂̀, where ` is a fresh,

distinct label. In other words, synchronization primitives havoc the abstract resource

versions potentially shared among threads.

3.5 Implementation and Challenges

We implemented Legato as a prototype tool for Java programs. We used the Soot frame-

work [192] for parsing bytecode and call-graph construction. We built the Legato analy-

sis on an extended version of the Heros framework [25]. Although we state our analysis

in terms of access paths for simplicity of presentation, we actually operate on access

graphs [105] a generalization of access paths. Access paths can only represent heap loca-

tions accessible via a finite number of field references. In contrast, access graphs com-

pactly encode a potentially infinite set of paths through the heap. The analysis presented

here extends naturally from access paths to access graphs.

To resolve uses of the Java reflection API, we relied on the heuristics present in the

underlying Soot framework. However, we also found all of the applications in our

evaluation suite provided a mechanisms for one method to invoke another based on

an application-specific URL recorded in a static configuration file. We found that, like

82

many uses of Java reflection [190, 15], these mechanisms are almost always used with

static strings. Following the technique outlined in [190], where possible we use these

strings to statically resolve these implicit calls to a direct call to a single method. When

these heuristics fail, we soundly resolve to all possible callees. Unlike the Java reflec-

tion API, which must consider all methods/constructors as possible targets, the set of

potential callees was small enough that this over-approximate approach was feasible in

practice.

We do not include the full Java Class Library (JCL) in our analysis for performance

reasons. For certain methods (e.g., members of the collections framework) we provide

highly precise summaries. For unsummarized methods, Legato conservatively propa-

gates information from arguments to return values/receiver objects similar to TaintDroid

[69].

3.5.1 Alias Queries

To resolve the mayAlias queries on heap writes (see Section 3.3.5), we use a demand-

driven, context and flow-sensitive alias resolution [173]. A single alias query must com-

plete within a user-configurable time limit; if this budget is exceeded, Legato reports

the configuration value as lost into the heap similar to the approach taken by Torlak

and Chandra [186]. This was not a source of any false positives in our evaluation. We

take a similar approach on flows of resources into static fields. Static fields are global

references that persist throughout the entire lifetime of the program. We conservatively

flag any write of a resource derived value that flows into a static field. This dramatically

improved our alias resolution time and did not lead to many false positives.

3.5.2 Resource Model

The analysis described in Sections 3.3 and 3.4 is stated in terms of only one external

resource. Our implementation handles multiple resources by operating over maps from

83

resource names to individual ARVs. For generality, our implementation is parameterized

over the resource access model of an application. A model defines the resource access

sites in an application, and for each site the set of resource names potentially accessed at

that site. The soundness and precision of Legato depends on the choice resource model:

a model that omits some access sites may cause Legato to miss potential bugs. Similarly,

an overly coarse model will be sound but likely imprecise in practice. However, in our

evaluation we found that resource access sites are easy to identify in practice; we describe

the resource models used in for our evaluation in Section 3.6.

The resource model used with Legato is unconstrained in the choice of resource

names. This flexibility allows an imprecise model for when resources may alias, or when

the exact name of resources cannot be determined precisely at analysis time. Under an

imprecise resource model, all access sites that may access the same concrete external

resource are mapped to a common abstract resource name. For example, all accesses

to files with the extension .txt may be mapped to the logical resource name *.txt. A

similar approach may be used when two or more resources interact or share state, i.e.,

resources with distinct names that share state may be given the same abstract resource

name.

3.5.3 Context-Sensitivity

Each call site of a method m may call the method with different abstract input values.

However, the IDE framework computes the values within m by taking the meet over all

abstract inputs. This leads to imprecision in the following scenario:

1 do_print (a) {

2 print(a);

3 }

4 do_print (get1());

5 do_print (get2());

The standard value computation within do_print would assign a the value 1̂ u 2̂ = ⊥

84

which is imprecise. Initial versions of Legato used the context-insensitive value compu-

tation provided in Heros [25], but our results were impractically imprecise.

To overcome this imprecision, Legato extends the value computation phase of Heros

to make it context-sensitive. We require an initial context and a context extension opera-

tor. At a call site to methodm, the context of the call site C is extended with the extension

operator, yielding the context C ′ for values computed within m originating from context

C. The original value computation pass of the IDE framework is then executed for the

method body with respect to the new context.

In our instantiation, we use an adaptive, k-limited call-string context scheme similar

to that in [145]. To trade-off precision and scalability, we initially run the value analysis

pass with all contexts limited to length 1. If Legato derives the value ⊥ for some method

parameter p in context C, it consults the corresponding argument values in all incoming

contexts. If the argument in each incoming contexts is non-⊥, Legato infers that the

⊥ value computed for p was due to insufficient context-sensitivity. Legato then adap-

tively increases the context-sensitivity for all such call sites, and then re-runs the value

computation phase. This process is repeated until no ⊥ parameter values arise due to

insufficient context-sensitivity, although we impose an configurable artificial maximum

length (6 in our experiments) to ensure termination. In our experiments, this limiting

was the source of only 3 false positives.

The approach described above is necessarily more expensive than the original IDE

framework, which runs only one value computation phase. In practice, the context-

sensitive value computation phase does not significantly contribute to analysis time for

two reasons. First, Legato needs only a handful of value computation phases to either

rule out false positives from insufficient context-sensitivity or reach the configured limit.

Second, within each value computation phase, values are computed within a method

using context-insensitive summary functions, which are generated in an initial pass of

the IDE analysis. These summary functions are symbolic abstractions of the method

behavior on all possible input values. As a result, there is no need to re-analyze a

85

method under each new context, which keeps recomputing values under new contexts

relatively inexpensive.

3.5.4 Edge Function Representation

The IDE framework [166] decomposes environment transformers into edge functions

between two dataflow symbols. In the Legato analysis, the dataflow symbols are ac-

cess graphs (as discussed above), and edge functions are represented with the trie ARV

domain extended with a special parameter node. By using the ARVs tries for both

values and function representations, we can reuse the implementations of meet/com-

position/etc. across the summary function and value computation phases of the IDE

algorithm.

The special parameter node, denoted Π, intuitively corresponds to the trie parameter

in edge functions. Thus, an ARV consisting of a single Π node corresponds to identity

function λs.s. Similarly, the ARV k̂i · [b 7→ Π] corresponds to the function: λs.k̂i · [b 7→ s].

To compose two functions represented as tries t1 and t2 (denoted t1 ◦ t2), all instances

of Π in t1 are simply replaced with copies of t2.

We also use the Π node to represent the priming operation. We attach a label/prime

pair (k̂,n) to a Π node to indicate that if the parameter node Π is replaced with a k̂-labeled

root then n primes should be added to substituted node. We denote this attachment with

Π
(k̂,n). For example, Π

(1̂,3) corresponds to the function:

λs.

1̂
n+3 ·M s = 1̂n ·M

s o.w.

For concision, we will write λs.s⊕ (1̂, 3) for functions like the above. We can represent

the composition of several such priming functions by allowing a sequence of label/prime

pairs to a Π node. For example, the composition of the functions f1 ◦ f2 = λs.f1(f2(s))

86

defined by:

f1 , λs.s⊕ (1̂, 1) f2 , λs.s⊕ (2̂, 2)

f1 ◦ f2 , λs.


1̂n+1 ·M s = 1̂n ·M

2̂n+2 ·M s = 2̂n ·M

s o.w.

is represented by the parameter node Π
(1̂,1)·(2̂,2). In general, we denote a sequence of

label/prime pairs by ξ, and will write Πξ. A sequence ξ with unique labels has an

isomorphism with a total function from labels to natural numbers,6 and we will use this

notation when convenient. The composition of two priming functions represented by

Πξ and Π ′ξ, where the labels in ξ and ξ ′ are disjoint, is simply Πξ·ξ ′ . However, if ξ and

ξ ′ do not contain disjoint labels, e.g., (k̂,n) ∈ ξ and (k̂,m) ∈ ξ ′, the resulting function

representation must represent a function that adds m+ n primes to an ARV with root

label c(k). We define the operation ξ⊕ (k̂,n) as:

λ̂j.

n+m ξ(̂j) = m∧ ĵ = k̂

ξ(̂j) o.w.

And write ξ⊕ ξ ′, which is the accumulated addition of elements of ξ ′ via ⊕ to ξ. Thus,

Πξ ◦Πξ ′ is Πξ⊕ξ ′ . (Note that the concatenation of sequences when ξ and ξ ′ are disjoint

is a special case of ξ⊕ ξ ′.)

We now define define the substitution operation σ(s, t) with priming inductively by:

σ(Πξ,Πξ ′) = Πξ⊕ξ ′

σ(Πξ, k̂n ·M) = k̂n+ξ(k̂) ·M

σ(k̂n · [b1 7→ s1, . . . ,bn 7→ sn], t) = k̂n · [b1 7→ σ(s1, t), . . . ,bn 7→ σ(sn, t)]

Thus, the composition fs ◦ ft of two function fs and ft represented by ARV tries s and t

respectively is itself represented by the ARV σ(s, t).

6A sequence ξ that does not contain a label k̂, is functionally equivalent to a sequence (k̂, 0) · ξ. Thus,
when converting to a total function, labels that do not appear in ξ implicitly map to 0.

87

Meet Operations The IDE framework requires a meet operation for the edge function

representation. The trivial definition, f1 u f2 , λs.f1(s) u f2(s), is technically correct but

will quickly explode in size. However, as we are using ARVs to represent functions, we

can (mostly) use the existing meet operator on ARVs to efficiently implement a meet for

functions. The only required extension is to define a meet operator on parameter nodes.

First, consider the simple case of a meet between two priming functions, one of which

adds a prime to a root label 1̂, the other a prime to label 2̂. The naı̈ve meet representation

is:

λs.(s⊕ (1̂, 1))u (s⊕ (2̂, 1))

Applying this function to the ARV 2̂ ·M yields 2̂ ·M u 2̂ ′ ·M = ⊥. Similarly, the result

of applying the resulting function to the ARV 1̂ ·M is also ⊥. Intuitively, the function

yields ⊥ for both example arguments because the two operands of the meet operation

add different numbers of primes; i.e., left operand adds 1 prime to a root with label 1̂

vs. 0 primes added by the right operand. This intuition hints at the complete definition

of the meet operator: the meet of two parameter nodes that add inconsistent numbers of

primes for a root label k̂ must yield a parameter node that returns ⊥ during substitution

of a trie with root label k̂.

Formally, we define the meet operator over prime/label sequences ξ and ξ ′ as:

ξu ξ ′ = λ̂j.

ξ(̂j) ξ(̂j) = ξ ′(̂j)

⊥ o.w.

Although defined using function notation, the above operation can be efficiently imple-

mented as ξ and ξ ′ are finite lists of prime/label pairs. The meet operator on parameter

nodes is then Πξ uΠξ ′ = Πξuξ ′ . Note that we have extended the domain of label/prime

pairs to allow a special “prime” value of ⊥. Intuitively, if (k̂,⊥) is attached to a parameter

node Π, then when a trie with root label k̂ is substituted for Π the substitution operation

should return ⊥. We therefore extend the substitution operation to:

88

σ(Πξ,Πξ ′) = Πξ⊕ξ ′

σ(Πξ, k̂n ·M) =

⊥ ξ(k̂) = ⊥

k̂n+ξ(k̂) ·M o.w.

σ(k̂n ·M, t) =

k̂
n ·M ′ M ′ = σm(M, t)∧M ′ 6= ⊥

⊥ o.w.

σm(M, t) =

M ′ M ′ = λb.σ(M[b], t)∧ dom(M) = dom(M ′)∧ ∀b ∈ dom(M).M ′[b] 6= ⊥

⊥ o.w.

In the above, we extend the ⊕ operator on label/prime sequences to handle the special

⊥ prime such that x + ⊥ = ⊥ + x = ⊥. Additionally, recall that we implicitly lift a

partial function from branch ids to ARVs to a total function by using > for any branch

ids without explicit values. We do not explicitly handle this consideration to avoid

notational clutter.

Effectively Identity Flows The effectively identity flows discussed in Section 3.4.3 are

defined in terms of complete ARVs. This formulation allowed us to exactly determine

when a label is required to distinguish transitive accesses or between behaviors of dif-

ferent callees at polymorphic call sites. However, this simple approach is not feasible

when taking meets over tries that include the parameter node. One potential solution

is to only apply the EIF optimization on ARV’s without the parameter node. We found

that this was not a realistic approach. We therefore adjust the EIF approach described

in Section 3.4.3 to conservatively preserve labels of call sites from which it is possible to

reach at least one resource access. In principle, this conservative approach could yield

false positives due to preserving call labels in an incomplete trie that are not necessary

post-substitution, but we found this conservative approach did not yield any false posi-

tives.

89

3.5.5 Limitations

A fundamental limitation of our analysis is that we do not consider any possible synchro-

nization between resource updates and resource accesses or between multiple resource

accesses. This limitation will only yield false positives, as this means our analysis may be

overly conservative in considering a program’s resource accesses. Our prototype could,

with modest effort, include annotations to indicate an access always returns the same

abstract version or multiple access sites return the same abstract version.

Our analysis soundness is stated only in terms of direct information flow, i.e., we

ignore the effects of implicit flow. Thus, Legato will fail to detect when two or more

accesses of the same resource indirectly flow to a program value. We experimented with

a version of the analysis that considered implicit flow but, as is common [107], the ratio

of false positives to true positives was overwhelming.

As mentioned above, Legato relies on the Soot analysis framework for call-graph

construction, reflection resolution, type hierarchy construction, etc. Thus, Legato is

sound modulo the soundness of the underlying Soot framework implementation.

3.6 Evaluation

To evaluate Legato, we focused on the issue of consistency in the presence of dynamic

configuration updates as studied in Staccato. We chose this problem as representative

of the broader problem of consistent dynamic resource usage, as we are unaware of

any existing static analysis that is capable of effectively addressing this problem. The

only tool we are aware of in this area is our work on Staccato, which may yield false

negatives. By instantiating Legato to find DCU defects, we can complement the highly

precise Staccato with a tool that (in principle) does not admit false negatives

We are interested in the following questions:

• Does Legato find dynamic resource consistency errors in the analyzed applications

with a reasonable ratio of true to false positives?

90

Program Classes Methods Call Graph Edges # IR Statements Options

snipsnap 643 3,318 20,079 68,841 19

vqwiki 506 5,019 43,211 145,891 73

jforum 528 3,075 15,607 41,319 48

subsonic 886 4,578 20,768 67,615 44

mvnforum 938 10,548 132,712 409,847 90

personalblog 371 1,427 8,186 25,514 16

ginp 205 1,011 8,100 26,448 7

pebble 576 2,989 20,646 66,477 7

roller 853 4,735 30,229 95,439 29

blojsom 471 1,782 15,846 26,786 67

Table 3.1: Measures of application complexity in the evaluation suite. # IR Statements

is the count across all methods of statements in the intermediate representation used by

Soot.

91

• Are the time and memory requirements to run Legato reasonable?

Experimental Setup We evaluated Legato on 10 Java server applications. A sum-

mary of the applications and metrics related to code base and call graph size (as mea-

sures of application complexity) can be found in Table 3.1. We selected these applications

from three sources. Subsonic and JForum come from our prior work on Staccato: we

include them for comparison with prior results.7 Personalblog, Snipsnap, Roller, and

Pebble are from the Stanford SecuriBench suite [125], a set of commonly analyzed web

apps [126, 118].8 Finally, we also used applications from prior work by Tripp et al. on

TAJ [190], a taint analysis for web applications. We used all projects from TAJ’s evalua-

tion that satisfied the following conditions: a) the source code is publicly available, b) the

project is a single, self-contained application, and c) the application supports dynamic

configuration updates. The applications satisfying these conditions are VQWiki, MVN-

Forum, Ginp, and Blojsom. Where possible, we used the same versions of the projects as

those used in the original TAJ paper.

The dynamically configurable options of every application may be changed by an ad-

ministrator at any point while processing a request. All our applications accessed their

configurations by reading from a global, in-memory map. When the configuration is

changed by an administrator (either via the web interface or editing the on-disk config-

uration file) a thread in the application updates the in-memory configuration map. This

thread runs concurrently with request handler threads that read from the configuration

map.

Given this implementation pattern, we treated each individual option as a separate re-

source that can change at any moment. Every application accessed configuration options

by either passing static strings to a key-value API (e.g., Config.getValue("db-password"))

or calling option-specific getter methods (e.g., Config.getDBPassword()). We implemented

7Staccato was also applied to Openfire, but it only to detected out-of-date configurations, an orthogonal
issue to consistency.
8The SecuriBench suite contains 9 applications, but the remaining 5 do not support DCU.

92

generic resource models for these two access patterns. When analyzing an application,

we specialized the appropriate model with an application-specific configuration YAML

file which described the application’s configuration API. The longest such file was only

195 lines. The number of options tracked for each application are included in Table 3.1.

All of the applications in our evaluation were written to run in a Java Servlet container

[141]. To soundly model these applications, we generated driver programs based on the

servlet container specification and used sound stub implementations of the servlet API.

For heavily used parts of the Java Class Library, such as the collection and database APIs,

we used hand written summaries. For other methods without implementations, we used

the over-approximation of method behavior discussed in Section 3.5.

We performed two experiments. To measure the effectiveness of Legato, we ran the

analysis on each evaluation program, and recorded all at-most-once violations reported

by the analysis. We then manually classified these reports as either a true bug or false

positive. (Where possible, we reported any true bugs we found to the original develop-

ers.)

To measure the performance of Legato, we ran the analysis 5 times for each appli-

cation while collecting timing and memory usage information. We break down the time

of the analysis into three components: call-graph construction time, alias query resolu-

tion time, and core analysis time, and report the average of these times. To measure the

memory requirements of Legato, we sampled the heap size of the JVM every second.

We intentionally avoid garbage collection before sampling the heap size. We found that

excessive garbage collection caused an artificially high number of alias query timeouts,

which ultimately skewed the analysis results and reported memory requirements.

All experiments were run on AWS EC2 m4.xlarge instances with 4 virtual CPUs at

2.4GHz, using the OpenJDK VM version 1.7.0 131, with 10GB of memory allocated to

the JVM. We limited all aliasing queries to ten seconds, and set a 15 minute timeout for

each run of the analysis.

93

Project TP FP PS SYN SF O

jforum 4 14 2 1 3 8

ginp 7 1 0 0 1 0

vqwiki 12 8 2 4 1 1

snipsnap 2 2 1 0 1 0

pebble 0 4 3 0 0 1

subsonic 31 12 1 9 2 0

personalblog 1 3 3 0 0 0

roller 6 5 1 0 1 3

mvnforum 2 27 19 0 0 8

blojsom t\o t\o t\o t\o t\o t\o

Table 3.2: Bug reports from Legato. TP and FP are the numbers of true and false pos-

itives respectively. The last four columns record sources of false positives: PS is path-

insensitivity, SYN is the conservative handling of synchronization, and SF is the conser-

vative handling of static fields discussed in Section 3.5. O counts causes not included

in the above categories, and includes imprecision due lack of application-, library-, or

framework-knowledge. t\o indicates no reports due to timeout.

94

3.6.1 Analysis Effectiveness

The results of running Legato on programs in our evaluation suite are shown in Ta-

ble 3.2. Legato successfully completed within the 15 minute budget on 9 of the 10 appli-

cations in our evaluation suite (we discuss the reason for Blojsom’s timeout below). Of

the 9 applications on which Legato completed, the analysis found bugs in 8. Although

the false positive ratio is relatively high, we were able to classify the results with minimal

effort as many of the false positives were obvious. In many cases (84.6% of column PS)

Legato detected that it lost precision due to control-flow join and automatically flagged

the result as a potential false positive. We also exploited that ARVs are traces of flows

from access to report sites to help interpret errors reported by our tool. We were able to

find these bugs with a simple resource model (Section 3.5.2) and without being experts

in the programs.

There are potentially two sources of false positives: imprecision in the analysis and

the at-most-once condition being too strong for application specific reasons. In prac-

tice, we found that all false positives were the result of imprecision in the analysis. The

primary source of imprecision was the lack of general path-sensitivity in the analysis

(column PS). For example, almost all of the path-sensitivity false positives in MVN-

Forum (16) were the result of identical code being cloned across different branches of

conditional statements. The second largest source of false positives was the conserva-

tive handling of code that required application-, library-, or framework-specific domain

knowledge to precisely model (included in column O). For example, 8 false positives

in the O column of JForum are due to imprecise models of Java’s reflection API. Our

control-flow graph contained an edge from the return-site of a Method.invoke reflective

invocation to a MethodNotFoundException exception handler, when the represented control-

flow path is actually unrealizable.

95

1 // Instance (1)

2 request . setAttribute ("url", config . getUrl ());

3 request . setAttribute (" baseurl ", config . getUrl ());

4 // Instance (2)

5 String url = "/space/" + encode (snip. getName ());

6 url += "/" + encode (att. getName ()));

7 // ...

8 String encode (String toEncode) {

9 String encodedSpace = config . getEncodedSpace ();

10 return toEncode . replace (" ", encodedSpace);

11 }

Figure 3.13: Two simplified examples of the “double read” pattern found in Snipsnap.

Sample Bugs

We now highlight some of the bugs found and discuss broad patterns we noticed in

our results. Many bugs arose from three patterns: 1) two sequential accesses to the

same configuration option, 2) using a configuration option in a loop, and 3) storing

configuration derived data in a global cache that was not cleared on update.

Double Reads We found 4 instances of applications immediately combining two suc-

cessive reads of the same option. Two simplified instances we found in the Snipsnap

program are shown in Figure 3.13. In the first instance, config.getUrl() returns a URL

based on the dynamically configurable option specifying the location of the web appli-

cation. If this option changes between the two accesses, the request object’s attributes

will contain URLs pointing to two different locations. This could cause confusion for the

user as only a subset of links on the page returned by Snipsnap would be valid.

The second instance is similar as the two invocations of encode both access the dy-

namically configured encodedSpace option. In this instance, the URL returned to the user

96

1 List <String > getPodcastUrls () {

2 List <String > toReturn = new List < >();

3 for (...) {

4 String baseUrl = // ...

5 int port = config . getStreamPort ();

6 toReturn .add(rewriteWithPort (baseUrl , port));

7 }

8 return toReturn ;

9 }

Figure 3.14: A correlated access found in Subsonic, where the "streamPort" option is

aggregated into the toReturn variable.

will contain a mix of incorrectly and correctly encoded spaces. As with the first instance,

this bug can cause links in the returned page to mysteriously fail to work.

The author of Snipsnap confirmed that these two instances corresponded to true

bugs, but declined to fix them due to age of the project, lack of active deployments, and

the author’s judgment that the bugs were not serious enough to warrant a fix [101].

Correlated Accesses within Loops Out of the 65 true reports, 21 were instances of

correlated accesses of configuration options within a loop. We counted instances where

a value derived from a configuration option read within a loop is aggregated with

configuration-derived values from previous iterations of the same loop. The aggregated

value is derived from multiple accesses of the same option, violating our at-most-once

condition. The priming approach described in Section 3.3.3 was crucial to detect these

bugs.

A simplified example of this pattern, found in Subsonic, is shown in Figure 3.14.

The URLs computed by the method are used to generate an XML file served to podcast

subscription clients. If some of the URLs generated by the method have inconsistent port

97

numbers, the subscription client end-user would be presented with a handful of podcasts

that fail to work. Further, unlike broken links on a webpage, the generated XML file is

likely never seen by the end-user and thus it may not be obvious that a refresh may solve

the problem.

We also found this pattern in other applications in our benchmark suite. For exam-

ple, in MVNForum, a web forum application, the email module may send messages to

multiple recipients, but constructs each message in different iterations of a loop. During

each loop iteration, MVNForum reads configuration options that specify the message’s

sender name and address, which may yield a batch of messages with inconsistent sender

information.

Finally, we found an example in VQWiki, a wiki web application, that potentially led

to a corrupted search index. While constructing the index, VQWiki executes a loop to

generate the set of documents to add to the index. Each loop iteration reads a configu-

ration option that controls the location of the application’s data files; this value is then

stored in the indexed document. If the value of the option were to change between loop

iterations, the index would be corrupted and only recover on the next complete index

rebuild.

Caching in Static Fields As explained in Section 3.5.1, to avoid expensive alias

queries for static fields while retaining soundness, we issue a report for each static field

to which resource-derived information flows. This rough heuristic identified 4 instances

where the at-most-once condition was violated due to caching.

For example, Legato detected JForum’s emoji cache bug that was also detected by

Staccato. Recall that JForum computes the URLs for these emojis based on the dynam-

ically configurable location of the forum application. These emoji URLs are cached in a

static field, but the contents of this field is not changed if the location of the application

is changed. As a result, after the update all links and images will use the new location

except for the emojis, which will be broken. Refreshing the page will not fix this issue

as it requires the administrator to manually clear the emoji URL cache or restart the

98

1 // in doStartTag

2 this.cols = horiz / Config . getThumbSize ();

3 this.rows = vert / Config . getThumbSize ();

4 // in doAfterBody

5 if(count - start >= this.rows * this.cols)

6 showPicture = false

7 // in _jspService (autogenerated)

8 int _j_0 = _jspx_getpictures . doStartTag ();

9 // 41 lines of auto - generated code

10 int _e = _jspx_getpictures . doAfterBody ();

Figure 3.15: Inconsistency bug found in Ginp. Detecting this bug requires precisely

modeling framework code, and handling flows through method calls and the heap.

application.

In a more serious example, we found an instance in Roller where the login component

cached whether password encryption was enabled in a static field populated at startup.

However, user administration actions (e.g., update user, create user, etc.) always read

the most up-to-date version of this flag, and encrypted passwords as appropriate. Thus,

after changing this flag, any new users created by the administrator would be unable to

log in until the entire application was restarted.

Other Patterns We found multiple cases where configuration derived values were

stored into the heap in one method, and then later combined with a configuration de-

rived value in another method. A minimized example of this pattern, found in Ginp, is

shown in Figure 3.15. Like most of the web applications in our evaluation, Ginp uses

Java Servlet Pages (JSP), a dialect of HTML which allows mixing arbitrary Java code and

user defined tags (such as <ginp:getpictures.../>). At page rendering time, JSP pages

are translated into Java code and compiled. User defined tags are transformed into a

sequence of calls to programmer defined callbacks. However, programmers generally

99

only interact with the JSP source code and do not see the intermediate code containing

these callback invocations.

The bug found by Legato involved one such user-defined tag. In one callback

(doStartTag, lines 2 and 3), the same configuration option is read twice and stored into

two seemingly unrelated heap locations. However, in a second callback (doAfterBody, lines

5 and 6) these two values are incorrectly combined to decide a loop condition. Finding

this bug required precisely tracing the two abstract resource versions interprocedurally

through the heap.

In another example, found in JForum, an SMTP mail session is constructed using the

value of the dynamically configured mail host and then stored into an object field. In

another method, this session is used to construct a transport, again using the value of the

mail host option. If the mail host option changes between these two calls, the transport

may try to connect to a mail host different from that of the mail session, which could

cause the mail sending process to fail. Further, we confirmed that if the mail sending

process failed with an exception, the messages to be sent were dropped and never resent.

This bug was also detected by Staccato.

Finally, we found a bug in Subsonic that relied on the sound handling of application

level concurrency described in Section 3.4.4. In this instance, a web request would initiate

an update of an in-memory list of remote clients. This list was protected by a synchro-

nized block. Legato concluded that a configuration-derived value placed in the list could

be mixed with other configuration-derived values that originated from other threads.

Comparison with Staccato To validate the effectiveness of our analysis, we compared

the bugs found by Legato with those found by Staccato. A direct comparison is im-

possible, as Staccato uses a slightly different correctness condition, unsound heuristics

not present in Legato, and also detects different types of errors orthogonal to the at-

most-once condition. In particular, Staccato detected several consistency violations via

the per-method configuration history object described in Section 2.3.4. However, the 4

bugs found by Staccato in JForum and Subsonic that correspond to our at-most-once

100

1 Request req = ...;

2 Response resp = ...;

3 HashMap context = new HashMap ();

4 for(Plugin p : plugins) {

5 p. process (req , resp , context);

6 }

7 sendResponse (resp);

Figure 3.16: Sketch of code pattern that

caused Legato to time out while ana-

lyzing Blojsom.
sn

ip
sn

ap

vq
w

ik
i

jfo
ru

m

su
bs

on
ic

m
vn

fo
ru

m

pe
rs

on
al

bl
og

gi
np

pe
bb

le

ro
lle

r

bl
oj

so
m

0

100

200

300

400

500

600

700

800

900

Ti
m

e
(s

ec
s)

Analysis
Alias Resolution
Call-Graph

Figure 3.17: Analysis times for the eval-

uation targets.

condition were detected by Legato. This finding partially validates that the bugs found

by Legato correspond to true DCU bugs.

3.6.2 Performance

The results of our performance experiments are shown in Figure 3.17. Of the 10 appli-

cations, 9 finished within the 15 minute time limit, and 6 took less than a minute. For

all applications in our evaluation suite, the 10GB heap limit was sufficient: the smallest

peak heap size we observed was 0.5GB while analyzing Ginp and the largest was 7.5GB

on MVNForum.

We now discuss the cause of Blojsom’s timeout. The vast majority of Blojsom’s 15

minute analysis budget was spent resolving alias queries. We found these expensive

alias queries were caused by a problematic code pattern, sketched in Figure 3.16. Blo-

jsom delegates the majority of request processing and application logic to 79 different

plugins which are called via interface methods in a for loop during request processing

101

(lines 4–6). To track per-request state, a shared HashMap context is also passed to each

plugin; many plugins write configuration information into this map. To find all aliases

of context, the alias resolver must explore all backwards paths of execution through the

loop. Unfortunately, the megamorphic callsite on line 5 caused an explosion in the paths

that must be explored, which quickly overwhelmed the alias resolver. We could poten-

tially address this issue by using a less precise approach to aliases, at the cost of overall

analysis result quality.

3.7 Conclusion

This chapter presented Legato, a novel static analysis for detecting consistency viola-

tions in applications that use external resources. Legato verifies the at-most-once con-

dition, which requires that all values depend on at most one access to each external

resource. Legato efficiently checks this condition without explicitly modeling concur-

rency by using abstract resource versions. We demonstrated the effectiveness of this

approach on 10 real-world Java applications that utilize dynamically changing configu-

ration options.

102

Chapter 4

RELATED WORK FOR DYNAMIC EXTERNAL RESOURCES

Linearizability, Consistency, and Atomicity Many of the staleness DCU errors found

by Staccato are the result of non-atomic configuration updates. In particular, in Fig-

ure 2.9, the program state is not updated atomically with the underlying configuration,

which causes a staleness violation in a multithreaded context. In other words, two con-

current invocations of the method in Figure 2.9 are not linearizable with each other [94].

A history of operations on an object is said to non-linearizable if the request/response

pairs cannot be reordered into a sequential order that respects the invariant of the object

without changing the order of events in the history.1 Similarly, the consistency con-

ditions checked by Staccato and Legato can be viewed as a linearizability violation.

Specifically, a computation that produces a value which reflects one or more versions of

a configuration option is not linearizable with one or more configuration updates.

This insight suggests that existing work on linearizability checkers could be applied

to the problem of external resource consistency. There has been research into auto-

matically checking linearizability [169, 34, 170] and repairing operations that are not

linearizable [124]. However, existing linearizability research focuses on linearizability of

ADT operations and cannot handle the arbitrary operations performed on configuration

options and other external resources. Further, most linearizability checkers appear to

(implicitly) depend on well-defined boundaries for operations. However, our framing of

external resource consistency errors as linearizability violations was in terms of arbitrary

computations that do not have well-defined static boundaries. Thus, we expect applying

1In the original linearizability paper, events are given partial order, where e1 < e2 if the operation of
e1 completes before e2 begins in the history.

103

existing linearizability checkers to the problem of external resource consistency will be

difficult in practice.

Current work on dynamic atomicity checkers [75, 196] offers another possible solution

that could detect consistency violations. In particular, the work in [75] detects violations

of serializability among critical sections in code. We can again frame a computation

that observes two or more versions of a single resource (configuration options) as within

this context. Each update of a resource (configuration option) is given its own critical

section, and each computation that reads one or more resources is given its own critical

section. If a computation observes multiple versions of a resource then the computation

is not serializable with the resource updates. However, the approach of [75] requires that

critical sections are again statically known. As demonstrated with the JSP error in Sec-

tion 3.6 computations that violate consistency can sometimes span multiple (seemingly

unrelated) methods making the derivation (automatic or manual) of the correct critical

sections difficult in practice.

Finally, we note that existing atomicity and linearizability checkers are best suited

to discovering errors in concurrent settings. Although some staleness violations can be

framed as linearizability errors, as illustrated by the Openfire contact list example in

Section 2.6.3, some staleness violations do not require on concurrency to manifest. It is

unlikely that a linearizability or atomicity/serializability checker could effectively detect

all staleness violations detected by Staccato.

Dynamic Software Updates There has been considerable research in the field of dy-

namic software updates (DSU) [133, 92, 153, 134, 93, 155, 146]. DSU aims to introduce

arbitrary code changes to running software without service interruption. Dynamic con-

figuration updates can be viewed as a specific case of DSU: each configuration update

is a controlled change to running software at runtime. However, existing DSU research

offers a potential alternative for current DCU mechanisms and does not discover bugs in

a existing DCU implementations. Further, even in the state of the art, existing DSU tech-

104

niques require significant effort on the part of the programmer to integrate with existing

applications and impose non-trivial performance overhead. One interesting common

point between existing DSU research and the approach in Staccato is how to main-

tain consistent application state in the presence of an online update. Many existing

approaches require the programmer to write update hooks (e.g., [146]): these callbacks

are similar those used by Staccato for program repair (Section 2.4.2).

Typestate Analysis and Affine Type Systems The “at-most-once” in Legato’s at-most-

once condition often evokes linear (or more accurately, affine) type systems [195, 84, 188,

28, 60]. Both linear and affine type systems restrict how often a value may be used.

Linear type systems guarantee that values may not be duplicated or destroyed, which

enforces an exactly-once use discipline. Affine type systems allow destruction, which

enforces an at-most-once use discipline. In contrast, under the at-most-once condition

resources may be accessed multiple times, and may copied and re-used by the program.

The at-most-once restriction only requires that each value depends only on at most one

resource access.

Similar to linear and affine types, typestate analyses [175, 61, 205, 59, 74, 144] focus

on verifying that the use of some object or resource follows a specific protocol. For

example, the motivating example given in the original typestate paper by Strom et al.

[175] is verifying that file handles are not written to after being closed. These access

protocols are generally expressed in terms of an abstract state assigned to each object,

and a set of methods or operations that cause transitions of object state according to

some automaton. The at-most-once condition is difficult to accurately capture using this

framework. Although it would be possible to design an automaton to enforce that each

resource was used exactly once during a value’s computation, this condition is stricter

than Legato’s.

105

Analysis Strategies Staccato’s analysis builds on extensive work on dynamic information-

flow analysis, in particular taint analysis [83, 90, 17]. Our approach precisely tracks data

dependence, but handles handles dependencies from indirect flow using a heuristic.

Dynamic analyses that precisely track dependencies from control-flow do exist (e.g.,

[103, 45]) but suffer scalability that limits their application to large programs such as the

ones we use in our evaluation. However, given a scalable framework for control-flow

tracking, Staccato could be extended to support control-flow. Legato likewise does

not track information propagated via indirect flows for the scalability reasons discussed

in Chapter 3.

As mentioned in Section 3.3.2, the Legato analysis is a type of sophisticated inter-

procedural constant propagation [39, 198, 106] and builds on a large body of techniques

developed in static information-flow analysis. However, constant propagation is gen-

erally used within the context of compiler optimizations whereas we are targeting a

correctness property.

Configurable Software Configuration management is an active area of research [207,

197, 201, 9, 10, 96, 208, 67, 161, 143, 120, 158, 203]. To our knowledge, no existing research

has examined the problem of DCU errors as examined in the Staccato and Legato

projects. Some existing work has used approaches similar to the Staccato dynamic

analysis to study different problems in the field of configurable software. ConfAid [11]

uses a dynamic information-flow analysis similar to ours to diagnose software miscon-

figurations. It associates each program value with a configuration set: this set tracks which

configuration options potentially influenced the construction of the value. This is very

similar to Staccato’s configuration histories. However, ConfAid reasons only about

static configurations, and does not track versions like Staccato. Rabkin et al. [157]

also tracked configuration values for the purposes of diagnosing configuration errors.

However, their analysis does not reason about dynamic configuration updates.

106

External Resources Many researchers have studied how programs interact with exter-

nal resources. For example recent work by Linares-Vásquez et al. [123] in the database

community generated descriptions of how applications interact with databases. In a re-

lated work, Maule et al. among others [156, 136] have evaluated the impact of database

changes on applications.

In addition to the above work on static external resources, verifying consistent behav-

ior in the presence of dynamic, external resources has also been an active area of research.

There has been considerable work in the security field to prevent vulnerabilities due to

malicious, concurrent changes of the filesystem [151, 22, 138, 36]. This is similar to

check-then-act errors [122, 121, 152] that result from a concurrent update invalidating

assumptions established by a check operation.

Several decades of database research on transactions and isolation has focused on

ensuring that applications interact consistently with the database. For example, serializ-

able isolation [21] can prevent check-then-act errors within a transaction by determining

when a concurrent update has invalidated a previous read. Although this isolation can

prevent consistency errors due to concurrent updates, empirical research performed by

Bailis et al. [13] has shown that applications that eschew database level transactions

(specifically Ruby on Rails applications) struggle to maintain consistency in the presence

of concurrent writers.

107

Chapter 5

WHOLE-PROGRAM STATIC ANALYSIS OF MODERN
APPLICATIONS

5.1 Introduction

Static analyses like Legato promise rigorous, automated proofs of the absence of soft-

ware defects. This promise has slowly gone mainstream: code-analysis tools are now

routine for many projects, including at large software companies (such as Microsoft [85,

114], Google [165], and Facebook [38, 37]).

However, building a sophisticated, whole program analysis like Legato is a signifi-

cant engineering challenge. Luckily, we were able to use existing tools to handle several

tedious but necessary tasks during the implementation of Legato. In particular, the Soot

framework [191] provided translation from bytecode to an intermediate representation,

call-graph construction, type information, string analyses, and points-to information.

This functionality is found in a wide variety of analysis frameworks for multiple lan-

guages [104, 191, 3, 147, 33]. The developers of these frameworks deserve substantial

credit: thanks to these platforms, researchers have been able to ignore complex imple-

mentation details and focus solely on implementing their analyses.

Unfortunately, writing a sound static analysis that produces useful results for real

programs is still an enormous challenge. Analysis implementations can easily exceed

tens of thousands of lines of code [132, 8]; Legato’s implementation consists of close

to 20,000 source lines of code. To understand the sources of complexity, one need look

no further than today’s software environment. Industrial-strength analyses must handle

industrial-strength applications in industrial-strength languages. Analyses must handle

objects, the pervasive use of callbacks, threads, exceptions, frameworks, reflection, na-

108

tive code, several layers of indirection, metaprogramming, enormous library dependency

graphs, etc. In our experience (and those shared by other static analysis authors), getting

a realistic static analysis to run on “real” applications requires a combination of luck,

multiple heuristics (which may never see the light of day in published papers), engineer-

ing effort, manual annotation, and unsatisfying engineering trade-offs. As a concrete

example of the luck required, we found during Legato development that we needed

answers for a type of aliasing query unsupported by all existing off-the-shelf pointer

analyses. A few weeks after this discovery, Boomerang [173], which was designed to

answer these queries, was published at ECOOP.

The research community has recognized these difficulties and continues to publish

work to tackle these challenges. However, developing a novel, sound static analysis and

testing it accurately on modern applications often remains excruciatingly painful for fun-

damental reasons. We now describe some of these reasons, using examples drawn from

our experience building Legato. The difficulties we describe are shared by many other

researchers. In particular, in the following section we focus on the challenges posed by

huge external libraries, the need for high-level, domain knowledge about API behav-

ior, and the pervasive use of frameworks. These difficulties motivate the second half

of this dissertation, which focuses on making whole program static analysis of modern,

framework-based applications practical.

5.2 Static Analysis Challenges

This section describes the challenges today’s static analysis writer faces. Although our

descriptions are given in the context of writing the Legato analysis for Java, the chal-

lenges we identify are not Java-specific in any fundamental way.

109

5.2.1 Libraries

No application is completely self-contained: even a simple “Hello World” application

transitively depends on 3,000 classes [112]. The size of an application’s transitive depen-

dencies can dwarf the original application code, sometimes by several orders of magni-

tude. The size of these libraries poses significant scalability challenges for static analysis

writers [7]. For example, a highly precise, scalable field-sensitive analysis by Lerch et al.

[118] exhausted 25 GB of memory when analyzing the Java Class Library (JCL), which

comprises over 18,000 classes. In the same work, an even less precise analysis exhausted

the 25 GB memory limit on 6 of 7 non-trivial applications when including external de-

pendencies. Our own experiences broadly mirror this trend: when including all external

dependencies Legato exhausts all available memory after running for over 20 minutes.

Some analyses consider all library code along with application code (e.g., [131, 69]).

This often limits the sophistication of an analysis: in general the more expressive or com-

plex the analysis, the less scalable it becomes. We do not suggest that useful static anal-

yses that consider library code cannot or do not exist: as mentioned in Section 5.1, large

companies run static analyses regularly on their codebases. Nevertheless, considering

an application and all dependent libraries requires trade-offs in analysis sophistication

and enormous engineering effort.

In practice, the challenges of including all library dependencies means many static

analysis writers accept incomplete portions of an application’s class hierarchy and/or

call-graph. In fact, the Soot framework by default excludes the method bytecode of all

classes in the java package, i.e., almost the entire JCL. However, ignoring these missing

pieces is clearly unsound. Analysis writers therefore resort to one of several unappeal-

ing options. The analysis writer may provide hand-written summaries for all missing

methods. This approach is precise but infeasible for even moderately sized applications.

A significant amount of Legato’s implementation effort was spent writing and inter-

preting summaries of Java’s collections library as described in Section 3.5. The collection

110

library is only a small portion of the entire JCL; supporting the entire JCL would have

been a monumental effort.

Another option is to apply a notionally conservative summary of missing library

behavior; e.g., “all data flowing into a function are propagated to the return value.”

This is the approach taken in places by FlowDroid [8] and where Legato did not have

access to library method implementations and we did not write a manual summary.

This technique is still technically unsound as it fails to consider “out parameters” and

other side effects, and is also imprecise for pure methods. However, this is often the

only option available as even finding the transitive dependencies of all libraries can be

impossible.

In response to this difficulty, several authors have explored how to make analysis

tractable in the presence of large libraries. A widely explored technique is caching results

across runs of an analysis. Caching forms the core of incremental analyses [154, 172, 6, 37,

142, 137]. However, these approaches can reuse results only from previous executions

from the analysis on the same program. If an analysis fails to terminate due to large

libraries there is no opportunity for caching. Kulkarni et al. have recently proposed a

technique to reuse analysis results on common (i.e., library) code shared between two

or more target applications [112]. However, this technique can reuse results only of the

same analysis and requires programmer provided predicates describing when cached

results may be soundly applied. Even the optimal approach for analyzing libraries in

isolation remains an area of active research [160].

An alternative option is to write modular (or bottom-up) analyses [52, 89]. Instead

of generating summaries for multiple (or infinite) calling contexts in a top-down setting,

bottom-up analyses may generate summaries for methods (including library code) valid

over all calling contexts. However, as noted by Zhang et al. [209], bottom-up approaches

may ultimately need to analyze exponentially many input states limiting their scalabil-

ity in practice. Thus, although theoretically appealing, “designing and implementing

[modular analyses] for realistic languages is challenging” [112].

111

Other authors have investigated generating library summaries in isolation for use in

client analyses. A widely cited technique by Rountev et al. [164] can generate some sum-

maries in isolation, but places limitations on the library call-graph and appears unlikely

to scale for analyses with a rich domain of input facts. In particular, their technique

enumerates over all possible inputs to a method. Even for relatively simple domains this

approach is unlikely to scale.

Finally, instead of relying on the hand-written or unsound rule-of-thumb summaries

described above, many authors have explored automatically inferring specifications for

missing library methods [24, 58, 127, 149, 159]. For example, in the context of a taint anal-

ysis, Bastani et al. [16] infer the specifications for missing methods needed to complete

flows from sources to sinks. These specifications are presented to the user as candidate

method specifications. Albarghouthi et al. and Zhu et al. [5, 211] have both explored

using abduction to infer the minimal method specifications to verify the absence of er-

rors. These techniques are promising, but they are currently limited to relatively simple

specifications, require a human oracle, or focus on inferring preconditions for methods.

These limitations mean that these techniques are unlikely to infer, e.g., the behavior of

Java’s thread pool or executor APIs.

The decision to exclude library implementations is motivated by scalability concerns

but also affects soundness. What impact do these decisions have on the analysis results

reported in the literature? It is hard to say: the answer is certainly “a non-zero number”

but to our knowledge there is no empirical study on false negatives due to excluded li-

brary code nor is this commonly reported in existing analysis results. It is up to analysis

evaluators (who are usually also the analysis designers and implementers) to decide if

this unsoundness arises in practice for the applications being analyzed. Unless the com-

munity can devise convincing experiments that the effects of excluding library code are

negligible, the current approaches used may undermine the credibility of static analysis

results.

112

5.2.2 High-Level API Knowledge

Analysis writers often require domain knowledge about the behavior of an API. For

example, to soundly construct call graphs, analyses must handle the concurrency and

reflection APIs of the Java Class Library. The reflection and concurrency APIs are just

one example: many different analyses need high-level knowledge about an API. For

example:

• What methods read or write from the database? [181]

• What methods return personal or sensitive information? [8]

• What methods may block execution of the current thread? [110]

• What methods and classes are part of a container abstraction? [65]

The answers to these questions are difficult to extract automatically and require read-

ing the relevant documentation. Unfortunately, a static analysis developer interested in

the answers to these questions must manually audit an API to find the methods of in-

terest. This audit is no trivial task: the reflection API alone contains over one hundred

methods spread across 17 different interfaces and classes. The identified methods are

added to a list of “special” methods; the analysis developer must then incorporate ad

hoc handling for these methods to the analysis. For example, the call-graph construction

facility of Soot [191] contains a hard-coded list of reflection and thread methods. WALA

[3], another framework for Java analysis, maintains its own list in an external XML file.

For many combinations of analysis domains and APIs, it is likely another analysis

author has already performed a similar audit. However, no shared infrastructure exists

to reuse and share the results of these audits, condemning analysis writers to re-audit

APIs. In addition to wasting time, this process is error prone: failure to properly ac-

count for high-level API knowledge may make an analysis unsound. Boomerang [173],

113

if(*) {

router.dispatch(“Login”, req);

}

#...

route.Login=SafeHandler

In Handler.java:

In props.ini:

requestMap = parse(“props.ini”);

void dispatch(String nm, Request r) {

requestMap.get(nm).send(r);

}

class BadHandler {

send(Request r) {

sensitive(r);

}

}

class SafeHandler {

send(Request r) {

this.f = r;

}

}

Figure 5.1: An invented program fragment that demonstrates string indirection com-

monly found in frameworks. Without the routing information in props.ini, the analysis

must conservatively assume the program dispatches to BadHandler (dashed line). Many

framework models incorporate this type of information.

an otherwise sound and precise alias analysis, failed to consider Class.newInstance() an

allocation site and therefore could not find aliases of reflectively instantiated objects.

5.2.3 Frameworks

Applications in complex domains (e.g., web applications, GUI programs) require a com-

mon set of functionality that does not vary significantly from application to application.

For example, most web applications must parse incoming HTTP requests and dispatch

them to the appropriate handler code. Rather than reimplement this functionality, appli-

cations use frameworks.1 Frameworks are skeleton applications with holes for application

specific code. Frameworks generally handle “boring” tasks (e.g., parsing HTTP requests

or dispatching incoming UI events) and allow the programmer to focus on application

specific tasks, e.g., responding to an HTTP request or UI event.

Frameworks are notoriously hard to analyze. In the interest of reusability, frame-

work implementations rely heavily on language features that are difficult or impossible

to analyze in general, such as reflection [23, 128]. This design makes basic call-graph

1The line between a library and framework is fuzzy. In this context, we use framework to refer to code
that provides scaffolding upon which an application is built.

114

construction (a basic requirement of any whole program static analysis) incredibly dif-

ficult. In addition to reflection, frameworks often use multiple layers of abstraction that

confound most static analyses. For example, in Figure 5.1, finding the exact callee of

send() in the dispatch() method requires reasoning about the precise key/value pairs

present in the requestMap variable. Without this information, the static analysis must

conservatively assume any handler is invoked, leading to a false report in BadHandler.

Making matters even worse, frameworks are often configured using annotations [76],

XML files [2], or other static sources. For example, the mapping information necessary

to precisely resolve the send() call in Figure 5.1 is found only in the configuration file

props.ini. A more extreme example of configurations, simplified from an application

we encountered while evaluating Legato, is shown in Figure 5.2. This configuration

snippet controls the (reflective) construction of an object graph, and contains a filtering

DSL that is interpreted by one of the reflectively instantiated objects. In this example, the

behavior of both the object construction facility and the DSL interpreter are almost en-

tirely controlled by this configuration information. A static analysis must either consider

these external artifacts (which requires deep domain knowledge) or make conservative

assumptions about the behavior of the framework (leading to a precision loss and corre-

sponding performance hit). Ignoring a framework’s code entirely is not a realistic option:

applications written using frameworks often lack a distinguished “main” function mak-

ing even basic call-graph construction impossible.

In practice, static analysis writers either laboriously manually write models2 of frame-

works [189, 8] or avoid evaluating their analysis on framework applications. The latter

option is unrealistic considering trends in application engineering but is understandable

given the former option: constructing framework models by hand is a time-intensive

and frustrating process. Our own experience evaluating Legato on web applications

that use the Servlet framework is representative of this difficulty. The Servlet frame-

2A model is a compact, potentially non-executable, description of framework behavior.

115

work is relatively simple but building a sound model of the framework required reading

parts of three specification documents: the Servlet, JSP (JavaServer Pages) and EL (Ex-

pression Language) specifications, which together total 557 pages of prose. The Servlet

framework is not an outlier: the reference document for Spring [2], a framework used by

Subsonic that builds on the Servlet framework, totals 910 pages.

Unfortunately, a good framework model usually cannot be built based on the frame-

work documentation itself. As mentioned above, framework behavior is often heavily

influenced by the application-specific configuration information. The analysis author

must often write model generators, which interpret a program’s framework configuration

file and produce a sound model of the framework’s behavior for that specific application

and configuration. This generated model is often a program that simulates (in an often ad

hoc way) the framework’s execution. For example, the Android framework dispatches UI

events to Android activities and can switch between activities based on lifecycle events.

The FlowDroid project models this behavior by generating a dummy main method which

contains a nondeterministic event loop that calls into the application’s event handlers.

Legato took a very similar approach; we wrote a model generator that generates a main

method which simulates receiving HTTP requests and the appropriate handlers. The

dummy main method generated by Legato also modeled the invocation of startup lis-

teners, filter chains and request listeners. Further, some applications in our evaluation

used the Struts or Spring frameworks that themselves build on the Servlet framework.

We also built model generators for these frameworks, itself a significant challenge.3

Building a good model requires more than just understanding the framework and

building a sound model. A model must also be precise enough that client analyses can

complete in reasonable amounts of time. For example, the largest performance gains

in Legato did not come from optimizations in the core analysis, but from aggressively

including more application-specific configuration information into our Servlet model to

3We released these model generators as the standalone simple-servlet project on GitHub: https:
//github.com/uwplse/simple-servlet.

https://github.com/uwplse/simple-servlet
https://github.com/uwplse/simple-servlet

116

1 <bean id=" filterChain " class=" FilterChain ">

2 <property name="chain">

3 PATTERN_TYPE_APACHE_ANT

4 / logout = logoutFilter , anonymousProcessingFilter

5 /login= basicProcessingFilter , rememberMeProcessingFilter

6 </ property >

7 </bean >

Figure 5.2: A simplified framework configuration fragment. The filterChain “bean”

is bound to an instance of FilterChain. The values of fields of the chain bean are

configured with property elements (line 2). Lines 3–5 define a tiny URL-mapping DSL

stored in the chain field. Building a complete model of this configuration requires not

only a model of bean definitions, but an interpreter for this DSL.

improve call-graph precision. These improvements are often non-trivial to implement

and require far-reaching modifications to the core analysis and libraries.

For example, the Servlet framework includes a forwarding mechanism similar to that

shown in Figure 5.1. The forwarding API takes a URL and returns a dispatcher object

which itself exposes an API that forwards the request to the handler associated with

the URL. This functionality is illustrated on lines 2 and 3 in Figure 5.3. As with most

framework behavior, the handler invoked by the dispatcher object is determined by a

mapping in the application’s configuration file. Our initial, naı̈ve model returned a dis-

patcher that forwarded to all possible handlers. This approach led to enormous cycles

in the call-graph, overwhelming the alias analysis we used in Legato. To improve pre-

cision we implemented the following optimization. For each handler h defined in the

Servlet’s configuration file, we generated a dispatcher object class hc that uncondition-

ally dispatches to h. The dispatcher object for the FooHandler is illustrated on lines 6–11

of Figure 5.3. Wherever the program invokes the forwarding API with a URL u that

117

1 // pre instrumentation

2 RequestDispatcher disp = serv. getDispatcher ("/foo");

3 disp. forward (req , resp);

4

5 // Generated by Legato

6 class FooHandlerDisp implements RequestDispatcher {

7 void forward (Request req , Response resp) {

8 // unconditionally forward req and resp to the FooHandler

9 fooHandler . handle (req , resp);

10 }

11 }

12

13 // post instrumentation

14 RequestDispatcher disp = (FooHandlerDisp)serv. getDispatcher ("/foo");

15 disp. forward (req , resp); // resolves to FooHandlerDisp above

Figure 5.3: An example optimization used during analysis of Servlet-based applications.

The instrumentation forces the call-graph construction algorithm to resolve the forward()

call to a special implementation that invokes the appropriate handler.

118

is handled by h, we downcast the result to hc. This instrumentation is illustrated on

lines 14 and 15 of Figure 5.3. This downcast forces Soot to resolve any forward() calls

to the unconditional dispatcher implementation we generate. Although this optimiza-

tion proved effective and significantly improved call graph quality, it required modifying

Soot’s call-graph construction facility, our model generation, and the core Legato analy-

sis. Note also that these modifications were part of just one of several optimizations we

implemented during the Legato project.

Given the immense engineering effort, time, and careful planning required, the re-

search community recognizes the difficulty of building a framework model: as recently

as 2015 [23], a complete model of the Android framework was a significant research

contribution. The work cited in [23] is just one of several efforts tackling analysis of

applications built on the Android framework [8, 132, 79, 204, 210]. Unfortunately, the

resulting models for frameworks (Android and others) are not always reusable across

frameworks, analyses, or application domains. This lack of generality would not be

significant if there were only a small handful of frameworks in use today; researchers

could simply devote the required time to create good models for this small set of frame-

works. However, there are many frameworks in active development. Although, there has

been work to simplify writing these models using a DSL [174], expecting static analysis

writers to build sound and efficient models for every framework in existence is unreal-

istic. However, evaluating new analyses on applications that use older, simple-to-model

frameworks is equally undesirable as it ignores trends in modern software development.

5.3 Conclusion

Despite advances in tooling and mainstream success, static analysis development is still a

painful process. The difficulties described above motivate the second part of this disser-

tation, which shows how to make the analysis of modern, framework-based applications

tractable. The work described in the following two chapters does not address all of the

challenges described above. Some potential solutions for the remaining challenges are

119

presented as future work in Chapter 9.

120

Chapter 6

HYBRID MOSTLY-CONCRETE AND ABSTRACT INTERPRETATION

6.1 Introduction

Modern application development practices pose immense challenges to the realization of

the promise of static analysis. Although static analysis techniques can precisely reason

about straightforward, imperative programs; modern applications are no longer batch

applications. To improve productivity and portability, software engineers increasingly

rely on large, complex libraries and frameworks. In particular, frameworks are difficult

to analyze due to their extensive use of reflection and metaprogramming, as well as

their extreme flexibility driven by external configuration artifacts. Chapter 5 describes

the specific challenges posed by these aspects of modern application development. To

provide a self-contained motivation for the work presented in this chapter, we will briefly

review the challenges posed by frameworks as they are the focus of the work presented

here.

Consider the invented code fragment in Figure 6.1, which exemplifies code patterns

commonly found in frameworks. Here start is part of the application, whereas delegate,

init, and main are provided by the framework. The framework first calls init, which

parses an application-specific XML configuration file, then constructs an AppContext to

hold the framework state. This state consists of a delegates map, which maps names

found in the configuration file to class names, and the class name of the application’s

entry point (field entryPoint). The framework reflectively invokes the application’s entry

point on line 18. When the application calls delegate from start, the framework uses

delegates to reflectively instantiate the class associated with the delegateName argument

and then reflectively invokes the handle() method on the newly constructed object. Thus,

121

1 // FRAMEWORK

2 AppContext init(String configFile) {

3 XMLDocument config = XML. parseFile (configFile);

4 AppContext ctxt = ...;

5 for(Node n : config . getNode (" delegates "))

6 ctxt. delegates .put(n.get("name"), n.get("class"));

7 // ...

8 ctxt. entryPoint = config . getNodeString (" entryPoint ");

9 return ctxt;

10 }

11 Object delegate (AppContext ctxt , String delegateName) {

12 String delegateClass = ctxt. delegates .get(delegateName);

13 Object d = Class. forName (delegateClass). newInstance ();

14 return d. getClass (). getMethod (" handle "). invoke (d);

15 }

16 void main () {

17 AppContext ctxt = init("conf.xml");

18 Class. forName (ctxt. entryPoint). getMethod ("start"). invoke (ctxt);

19 }

20 // APPLICATION

21 void start(AppContext ctxt) {

22 while(true) {

23 String request = Network . accept ();

24 Object resp;

25 if(request == "ping") {

26 resp = delegate (ctxt , "ping");

27 } else {

28 resp = delegate (ctxt , "pong");

29 }

30 Network .send(resp);

31 }

32 }

Figure 6.1: A motivating example demonstrating the difficulty in analyzing framework

applications. Specifically, key control-flow decisions in delegate and main depend on the

contents of conf.xml.

122

the callees on lines 14 and 18 are determined entirely by the configuration file, which is

opaque to standard call-graph construction algorithms.

To analyze delegate and the reflective method invocation on line 18, analysis authors

can choose to: 1. unsoundly ignore the reflective call, 2. be extremely imprecise, e.g., by

allowing reflective calls to resolve to any method, or 3. based on the contents of conf.xml,

build an application-specific model of the framework behavior. Option 1 misses most

of the application’s behavior, yielding many false negatives; in Figure 6.1, none of the

application will be analyzed. Option 2 has the opposite problem: many false positives

and infeasible control-flow paths. Finally, option 3 requires significant manual effort.

Although this effort can be alleviated with recent techniques (e.g., [174, 23]) creating a

model generator for a framework is itself a monumental task.

Other analysis techniques also struggle with framework-based applications. Given

a concrete configuration file, the framework methods in Figure 6.1 follow only one

execution path, suggesting a partially-concrete approach, such as concolic execution

[167, 86, 168]. However, the infinite “accept” loop in start is challenging even for state-

of-the-art concolic executors. Finitization of the loop can yield false negatives, and some

execution engines may fail to terminate. In contrast, a static analysis built using the

monotone framework [102] or abstract interpretation [47, 49, 51] can soundly approxi-

mate the infinite loop by computing a least fixed point over a series of equations.

A key insight of our approach is that many applications and frameworks follow this

pattern: framework implementations are difficult to analyze statically, but large parts

are statically executable given a concrete, application-specific configuration file. Statically

executable refers to a program fragment that: a) can be completely and deterministically

evaluated at analysis time, and b) will yield the same program state after evaluation at

both runtime and analysis time; the init method is an example of statically executable

code. Conversely, application code contains unbounded control-flow paths. As a result,

a one-size-fits-all approach to program analysis is unwise for framework-based applica-

tions.

123

This chapter presents Concerto, a system for soundly combining mostly-concrete

interpretation, an extension to concrete interpretation we introduce and formalize in

this chapter, and abstract interpretation. By combining these two techniques, Concerto

leverages the strengths of both approaches while avoiding their weaknesses. Concerto

analyzes framework implementations using mostly-concrete interpretation, and applica-

tion code using abstract interpretation. Mostly-concrete interpretation supports nonde-

terminism and over-approximation of sets of values, ensuring our combined interpreta-

tion is sound while still terminating.

Our combined interpreter is itself an abstract interpreter that operates over a com-

bined domain of abstract and mostly-concrete states. By formalizing our combined ap-

proach within the theory of abstract interpretation (AI), we can directly use techniques

from the AI literature to prove soundness, termination, etc. Concerto differs from par-

tial evaluation, as the abstract and concrete interpreters may yield into one another on

demand, which allows greater concrete execution within framework code (we illustrate

this point further in Section 6.2). Concerto is analysis agnostic and can be used with

any analysis that satisfies a modest set of conditions. It is provably sound: integrating

any sound abstract interpretation that satisfies these conditions into Concerto yields a

sound, combined analysis. In addition, we have shown that abstract interpretations that

satisfy a small, additional set of conditions can provably expect equal or greater precision

when used with Concerto.

Key to our approach is the observation that framework code does not directly manip-

ulate application state and vice versa. This state separation allows Concerto to partition

a program state into two disjoint representations: a mostly-concrete representation used

to model the framework state, and an abstract representation for application state. The

mostly-concrete component of Concerto may therefore manipulate its portion of the

program state while remaining agnostic about the abstract representation used by the

abstract interpretation component, and vice versa.

We have implemented an initial proof of concept of Concerto for a subset of Java.

124

We have demonstrated the flexibility of Concerto by incorporating three different anal-

yses with different abstract domains into this prototype. We found that using Concerto

significantly increased precision across all analyses when applied to a difficult-to-analyze

framework implementation.

6.2 Overview

We will first informally describe how Concerto operates on the program in Figure 6.2,

which is written in a simple language we will call Map. Among other features, Map sup-

ports I/O, reflection, and maps which are sufficient to illustrate the core of our technique.

This program and language will also serve as our running example as we formalize our

approach in the remainder of this chapter. We will later formalize a language parame-

terized by base constants and operations into which we can embed the Map language.

In Figure 6.2, the framework code is in the left column and the application code in

the right. On lines 2–9, the framework opens an (application-provided) configuration

file, and creates a map m from application-specific identifiers to procedure names. The

application start point, s, is then called with m as its argument. The only other framework

code is dispatch, which uses the map produced in main to look up a procedure name

associated with k and invoke the named method. The invoke intrinsic reflectively calls the

procedure named by the first argument with the remaining arguments. The application-

specific logic is implemented in the procedures s, f, g, h, and i.

Although the program, framework, and language are significantly simpler than the

full Java language and the example shown in Figure 6.1, they together pose many of

the same challenges. In particular, the reflective operation in dispatch depends on in-

formation in a configuration file stored in a map. Many difficult-to-analyze framework

features, such as dependency injection [77], Android Intents [15], or Servlet dispatch

objects (see Chapter 5) follow a similar pattern.

This program exemplifies the state separation hypothesis, which requires that the ap-

plication state is opaque to the framework implementation and similarly for framework

125

1 proc main () {

2 f = open(" config ");

3 m = empty;

4 k = read f;

5 while(k != "") {

6 v = read f;

7 m = set m k v;

8 k = read f;

9 }

10 // [m 7→ ["b" 7→ "f", "a" 7→ "i"]]

11 s(m);

12 }

13 proc dispatch (k, arg , m) {

14 // from g:

15 // [m 7→ ["b" 7→ "f", "a" 7→ "i"],arg 7→ {+}]

16 // from h:

17 // [m 7→ ["b" 7→ "f", "a" 7→ "i"],arg 7→ {−}]

18 callee = get m k

19 invoke (callee , arg , m);

20 }

config

b

f

a

i

21 proc s(m) {

22 x = ?;

23 while(x >= 0) {

24 g(x, m);

25 x = ?;

26 }

27 h(x, m);

28 }

29 proc g(p, m) {

30 p = p + 1;

31 // [m 7→ ["b" 7→ "f", "a" 7→ "i"],p 7→ {+}]

32 dispatch ("b", p, m);

33 }

34 proc f(p, m) {

35 if(p <= 0) {

36 error ();

37 } else {

38 print(p);

39 }

40 }

41 proc h(q, m) {

42 dispatch ("a", -4, m);

43 }

44 proc i(q, m) {

45 print(q);

46 }

Figure 6.2: Motivating example. The framework implementation (main and dispatch) uses

many of the same implementation idioms found in Figure 6.1. The comments in green

show the abstract and mostly-concrete states that reach those program points during

combined execution.

126

state and application code. Thus, the application state (in this case, the integer arguments

to dispatch) is not interrogated or manipulated by the framework, only threaded through

the dispatch procedure and then passed back into application procedures. Similarly, the

framework state encapsulated in the dispatch map m is not directly manipulated by the

application, only threaded through application code to calls back into dispatch.

In our experience, this hypothesis applies to most real-world implementations; to pro-

mote reusability, applications and frameworks rarely directly manipulate each other’s

state, instead communicating via method calls on opaque interface types. To validate

this hypothesis, we performed an informal evaluation of two large Java web frameworks

used by programs in the Legato evaluation suite, Spring [2] and Struts [76]. The ma-

jority of framework state is contained in non-public object fields. We found that across

the two frameworks only 0.5% (64/12304) of fields had public visibility and thus the

application cannot mutate the vast majority of framework state. Our experience with

other frameworks suggests this pattern is the norm. Similarly, frameworks do not di-

rectly mutate application state; to maximize flexibility, frameworks avoid depending on

predetermined field names or class layouts, instead relying on well defined interfaces

to communicate with the application. Together, these facts suggest that modern Java

framework implementations are a natural fit for our state separation hypothesis.

Concerto exploits this state separation to thread abstract values produced by the

abstract interpreter through concrete interpretation and the abstract interpretation may

do the same for concrete values produced by concrete interpretation. (Concerto also in-

cludes support for the rare cases where this hypothesis does not apply, see Section 6.8.4.)

Section 6.3.1 formalizes a type-based state separation that is natural in languages like

Java.

Without additional knowledge about the program in Figure 6.2, a standard abstract

interpretation not integrated with Concerto must make worst-case assumptions about

read, and thus use an extremely imprecise abstraction of the framework state in m. As

a result, analysis of dispatch would conclude that invoke may call any procedure. Thus,

127

main s

g h

dispatch

f i

(a) Sound but Imprecise Call-Graph

main s

g h

dispatch

(b) Unsound Call-Graph

main s

g h

dispatch

f i

dispatch

(c) Call-Graph with Concerto

Figure 6.3: Call graphs produced by different analysis schemes. In (a), calls from dispatch

to main and s can be ruled out by matching argument arities. In (c), procedures executed

(mostly-)concretely are given a dashed outline.

plain abstract interpretation cannot rule out that a negative argument may flow from h

through dispatch to f and that the error() statement is reachable. On the other hand,

ignoring invoke as though it is a no-op ignores important application behavior. The call

graphs for these two situations are illustrated in Figures 6.3a and 6.3b, respectively.

Suppose now that we have the following domain knowledge about our program:

1. The contents of the file config are available at analysis time and will not change

between analysis time and program runtime.

2. config has the contents shown in Figure 6.2

This information ensures that error() is never executed: dispatch will always call f with

the positive argument passed to it by g. However, even if an abstract interpretation

has this information, verifying that error() is unreachable requires an extremely precise

semantics and representation for maps. This precision can be achieved in this simple

language, but, in practice, frameworks use much more complicated data structures and

abstractions, making precise analysis via pure abstract interpretation unlikely. In con-

trast, Concerto integrated with a simple signedness analysis can prove that the error()

statement is unreachable, using a process we briefly sketch below.

128

6.2.1 Analyzing the Example

Concerto begins analysis of the program by concretely executing main(). Due to the

domain-specific knowledge described above, the initialization loop is statically executable.

Concerto opens the file "config" and runs the loop to completion. When the loop ter-

minates, m holds the map ["b" 7→ "f", "a" 7→ "i"]. We stress that Concerto uses no

application- or analysis-specific logic here: Concerto simply performs concrete inter-

pretation, opening the listed file and executing the loop.

At the call to the application entry point s on line 11, Concerto switches to abstract

interpretation, in this example a signedness analysis. A key assumption of Concerto

is that framework code, once given a concrete configuration, is almost entirely stati-

cally executable. In contrast, application code may deal with nondeterministic inputs,

giving rise to unbounded loops like the one on lines 23–26. Although concrete execu-

tion will naturally fail to terminate on the loop in s, abstract interpretation can easily

over-approximate the loop.

When switching to abstract interpretation, Concerto transforms the concrete pro-

gram state at the call-site to the abstract representation used by the abstract interpreter.

We describe this process in more detail in Section 6.4.3. In this example, the signedness

analysis begins in the abstract state: [m 7→ ["b" 7→ "f", "a" 7→ "i"]]. The abstract inter-

preter has not abstracted away the framework state; instead, the signedness analysis has

reused the concrete value directly for the value of m. However, the abstract interpreter

does not need to implement concrete map semantics or otherwise “understand” this rep-

resentation. Due to the state separation hypothesis described above, any map operations

on m occur in framework code, which is not analyzed using abstract interpretation.

In the while loop of s, the signedness analysis analyzes the call to g, which itself

calls the framework’s dispatch procedure in the abstract state [m 7→ ["b" 7→ "f", "a" 7→

"i"],p 7→ {+}]. For this call, Concerto switches from abstract interpretation to mostly-

concrete interpretation. Concerto cannot soundly switch back to fully-concrete inter-

129

pretation because the above abstract state cannot be concretized to a single concrete state

(or even a finite set of states): p abstracts the infinite set of all positive integers. To

avoid materializing an infinite set of concrete states, our mostly-concrete interpretation

supports abstractions of infinite sets of values. To represent the infinite set of possible

values of p, the mostly-concrete interpreter reuses p’s abstract value in the abstract inter-

preter, i.e., {+}. Concerto is agnostic to the domain of abstract values; had the analysis

chosen instead to represent integers with, say, intervals, the mostly-concrete interpreter

would also use intervals. As with the embedding of concrete maps into abstract states,

the mostly-concrete interpreter does not need semantics for primitive operations over the

signedness domain: integer operations on the application state only occur in application

code which is not executed mostly-concretely.

As the value of m in the abstract caller state is ["b" 7→ "f", "a" 7→ "i"], this value can be

directly reused in the callee mostly-concrete state. Hence, mostly-concrete interpretation

has no problem concretely evaluating this call to dispatch with "b" and m to determine

that control should transfer back to the application by calling f with p.

At this final call back into the application, Concerto once again switches to abstract

interpretation, transforming the mostly-concrete state into an abstract state. The value

of arg in the mostly-concrete state is {+}, which becomes the value of p in the abstract

interpreter. Using this abstract value, the abstract interpreter can prove the true branch

of the conditional is never taken. Analysis of the call to h on line 27 proceeds similarly,

again using mostly-concrete interpretation to precisely resolve the dispatch call. The final

call-graph used during combined interpretation is shown in Figure 6.3c.

The above process bears many similarities to partial evaluation [82, 140] where the

configuration file is treated as a static input. A sufficiently powerful partial evaluator that

supports metaprogramming (e.g., [177]), could produce a residual program from Fig-

ure 6.2 that a signedness analysis could verify. However, suppose g used dynamic input

to choose between "b" and another procedure name as the argument to dispatch. In this

scenario, the partial evaluator would not fully reduce the body of dispatch, making the

130

signedness analysis imprecise. This scenario also illustrates the benefit of Concerto’s

on-demand interleaving of mostly-concrete and abstract interpretation. If Concerto

performed all concrete execution ahead-of-time as a preprocessing step for abstract in-

terpretation, it would suffer from the same imprecision as partial evaluation. In contrast,

provided the abstract interpretation faithfully tracks the two possible procedure names,

the mostly-concrete interpreter can precisely resolve the invoke operation to the two po-

tential callees.

6.2.2 Outline

The remainder of this chapter formalizes and elaborates on the process sketched above.

Section 6.3 defines an intraprocedural language we will use and extend throughout the

chapter. Our formal language makes explicit the state separation hypothesis. We define

a concrete semantics for this language against which we prove Concerto sound, and

describe the expected definition of abstract interpreters.

Section 6.4 describes our main contribution: the combination of concrete and abstract

interpretation. Section 6.4.1 demonstrates how a naı̈ve combination of concrete and ab-

stract interpretation yields a sound basis for combined interpretation, but one that is

impractical to implement due to the difficulty of concretizing abstractions of infinite

sets of values, as was the case with {+} above. Section 6.4.2 defines mostly-concrete in-

terpretation which can handle abstractions of infinite sets of values. Section 6.4.3 shows

how combining abstract and mostly-concrete interpretation yields a sound interpretation,

and formalizes how mostly-concrete states are transformed into abstract states, and vice

versa. Finally, Section 6.4.4 defines a set of sufficient conditions for Concerto to match

or exceed the precision of an abstract interpretation.

Section 6.5 briefly discusses how we extend our formalism to procedures. Section 6.6

describes a particular iteration strategy that is natural in practice and Section 6.7 sketches

how we ensure termination (while retaining soundness) under this iteration strategy

131

` ::= `a| `f prog ::= (fstmt` | astmt`)∗

astmt` ::= `a : astmt fstmt` ::= `f : fstmt

astmt ::= goto ` | x = aexp | if x <=> y goto ` fstmt ::= goto ` | x = fexp | if x <=> y goto `

aexp ::= y | bca | aop(v1, . . . , vn) fexpr ::= x | bcf | fop(v1, . . . , vn)

Figure 6.4: Intraprocedural grammar, parameterized by language-specific choices for

bcf, fop, bca, and aop.

using widening. We then discuss our prototype implementation (Section 6.8), the results

of initial case studies (Section 6.9), and then conclude in Section 6.10.

6.3 Preliminary Definitions

6.3.1 Language Definition

Our core language is a simple imperative language with conditional/unconditional goto,

variable assignments, and constants and primitive operations over a set of types. We

formalize a type-based state separation by partitioning this set of types into application

and framework types, and restricting all operations on framework types to framework

code and similarly for application types.

The formal grammar is given in Figure 6.4. We assume two disjoint families of types

A (for application) and F (for framework) and, with a slight abuse of notation, will use

A (respectively F) as a metavariable to range over the types in A (respectively F). Every

variable is given a type drawn from one of these families. bcf and fop range over base

constants and primitive operations respectively for types in F, and bca and aop do the

same for A. All operations in fop have type (F× . . .× F)→ F, and similarly for aop and

A. The <=> nonterminal ranges over comparison operators.

In our language, `f label framework statements, and similarly for `a and application

statements. The label of a statement determines what operations may be performed by

132

that statement: fops and bcf may only appear in code labeled with `f, and similarly for aop,

bca and `a. Further, we require that comparisons in statements labeled with `a can only

compare values of types in A, and similarly for `f and F. However, statements labeled `f

may move values between variables with type A, and vice versa for statements labeled

`a. In other words, framework code must treat values of type A (“application values”)

opaquely, threading them through to statements labeled `f. Similarly, statements labeled

`a must treat F values opaquely. This syntactic restriction models the state separation

hypothesis described in Section 6.2. (In practice, this strict separation may be violated by,

e.g., primitive types like int, library types, etc.; our implementation has special support

for these shared types as described in Section 6.8.4.)

The full operational semantics (found in Figure 6.5) are defined in terms of the follow-

ing denotations and value domains, which we will use throughout the remainder of the

paper. Let Va be the set of all values with a type in A and similarly for Vf and F. Every

aop has a denotation JaopK : (Va× . . . Va)→ Va ; we assume that aops are deterministic. In

contrast, some fop operations may produce values that depend on the value of some envi-

ronment model E, which models nondeterminism due to file contents, network requests,

etc. Formally, each fop has a denotation JfopK : E× Vf × . . .× Vf → P(Vf × E), where

〈v ′,E ′〉 ∈ JfopK(E, v1, . . . , vn) means executing fop in environment E ∈ E with arguments

v1, . . . , vn produces a new environment model E ′ and result v ′. To simplify presentation,

we require that denotations are total functions; in practice, we assume that the deno-

tations gracefully handle runtime type errors (e.g., by returning a sentinel error value,

halting execution, etc.). Finally, we assume that J<=>K denotes into a binary relation over

values of the appropriate type, J<6=>K is the negation of J<=>K, and Jbcf K and JbcaK produce

values in Vf and Va respectively corresponding to the interpretation of those constants.

Although the result of fops depend on the current environment E, in some cases we

may have a priori information such that a seemingly nondeterministic fop, i.e., reading a

file, is effectively deterministic. For example, in Section 6.2, we exploited domain specific

information about runtime contents of the configuration file to precisely execute the

133

〈e, s, `〉 → 〈e ′, s ′, ` ′〉

goto

prog[`] = goto ` ′

〈e, s, `〉 → 〈e, s, ` ′〉
assign

prog[`] = x = y succ(`, ` ′)

〈e, s, `〉 → 〈e, s[x 7→ s[y]], ` ′〉

const

prog[`] = x = c c ∈ bca ∪ bcf succ(`, ` ′)

〈e, s, `〉 → 〈e, s[x 7→ JcK], ` ′〉

if-true

prog[`] = if x <=> y goto ` ′ s[x]J<=>Ks[y]

〈e, s, `〉 → 〈e, s, ` ′〉

if-false

prog[`] = if x <=> y goto ` ′′ ¬(s[x]J<=>Ks[y]) succ(`, ` ′)

〈e, s, `〉 → 〈e, s, ` ′〉

aop

prog[`] = x = aop (y1, . . . ,yn) JaopK(s[y1], . . . , s[yn]) = v succ(`, ` ′)

〈e, s, `〉 → 〈e, s[x 7→ v], ` ′〉

fop

prog[`] = x = fop (y1, . . . ,yn) 〈v, e ′〉 ∈ JfopK(s[y1], . . . , s[yn]) succ(`, ` ′)

〈e, s, `〉 → 〈e ′, s[x 7→ v], ` ′〉

Figure 6.5: Operational semantics for the intraprocedural language.

134

initialization loop. We account for this knowledge by allowing hypotheses on the domain

of E. For example, if E models file-system contents, and we have a priori knowledge that

a file f always has content c at runtime, we can restrict E to include only models where

the file f has contents c.

Throughout the rest of this chapter, we assume that we are operating on some arbi-

trary program written in this language and that the relations pred and succ are defined

with the obvious definitions and there is a map prog from labels to unlabeled statements.

Example 6.3.1 (Map Language). We can encode the Map language and state separation

of Section 6.2 in this language framework as follows. Control-flow constructs (if/while)

can be encoded using the goto representation defined in Figure 6.4; we defer discussion

of procedures to Section 6.5.

We take A = {int}, i.e., the type of machine integers, with bca defined to be integer

constants, aop to be the usual arithmetic operations, and Va as machine integers. We

next define F = {File, Str,M}, where M is the domain of maps from strings to strings,

and instantiate fop with the following:

open : Str→ File read : File→ Str set : M× Str× Str→ Str get : M× Str→ Str

We define bcf as the set of literal string constants and empty : M which is an empty map.

Finally, we take Vf = STR ∪ FileContents ∪ (STR → STR), where STR is the set of string

values and FileContents is a finite stream of STR values. Given the syntactic constraints on

where aops and fops may appear, this instantiation encodes that the application may not

manipulate the framework dispatch map m, nor may the framework manipulate integers

received from the application.

Finally, the domain of environment models E is a map from strings to file contents,

i.e., STR → FileContents. We encode the information about the configuration file by

requiring that: E = {e | e ∈ STR→ FileContents ∧ e["config"] = 〈"b", "f", "a", "i"〉}

135

6.3.2 Concrete Properties

Concerto targets abstract interpretations where the approximated concrete property is

the set of reaching concrete states that may occur during program execution. In the

intraprocedural language described thus far, a concrete state is a valuation for the vari-

ables in the program plus an environment model. Formally, a concrete state is defined

as: S = E× (X → V) where V = Va ∪ Vf ∪ {⊥V }, X is the domain of variables appearing

in a program, E is type of environment models described in Section 6.3.1, and ⊥V is a

sentinel “uninitialized” value. We assume the type system is sound, i.e., for any concrete

state s arising during execution: type(x) ∈ F ⇒ s[x] ∈ Vf and type(x) ∈ A ⇒ s[x] ∈ Va,

and that all variables must be defined before use, i.e., a program never observes ⊥V .

Next, define a domain of flow edges L as: L = {`◦ `•}∪ {p• `◦ | p ∈ pred(`)}, where

`◦ and `• respectively denote the “entrance to” and “exit from” `. Elements `◦ `• of L

correspond to the flow of program control through the statement labeled `, whereas an

element p• `◦ corresponds to the flow from some predecessor p to `. When convenient,

we will abbreviate `◦ `• as simply `. We will use ~̀ to represent an arbitrary element

of L.

Our domain of concrete properties is R = L→ P(S), which forms a complete lattice,

defined pointwise over edges; the powerset of states also forms a complete lattice with

the usual definitions.

We now define the concrete semantic function, F : R → R, the least fixed-point of

which is a complete set of reaching states for a program. That is, for every ~̀ ∈ L, if

〈s,E ′〉 ∈ (lfp F)[~̀] then there is some execution that flows through edge ~̀ yielding 〈s,E ′〉.

The full definition of F is given in Figure 6.6. As is standard, the definition of F closely

mirrors the operational semantics of the language shown in Figure 6.5. We assume

program execution begins at a single, distinguished label s. Program start is modeled

with the second term in the definition of F(r)[`◦ `•]: ιE is a set of possible initial

environments, and ιS is a distinguished start state which maps all variables to ⊥V .

136

F(r)[`◦ `•] =
⊔

p∈pred(`)
in∈r[p• `◦]

stepF(in, `)t


⊔
e∈ιE stepF(〈ιS, e〉, `) ` = s

∅ o.w.

F(r)[p• `◦] =


{〈s,E〉|〈s,E〉 ∈ r[p◦ p•]∧ s[x]J<=>Ks[y]} prog[p] = if x <=> y goto `

{〈s,E〉|〈s,E〉 ∈ r[p◦ p•]∧ (s[x]J<6=>Ks[y])} prog[p] = if x <=> y goto ` ′

r[p◦ p•] o.w.

stepF(〈in,E〉, `) =



{〈in,E〉} prog[`] = if ... ∨ goto ...

{〈in[x 7→ in[y]],E〉} prog[`] = x = y

{〈in[x 7→ JcK,E〉} prog[`] = x = c

{〈in[x 7→ JaopK(in[v1], . . . , in[vn])],E〉} prog[`] = x = aop(v1, . . . , vn)

{〈in[x 7→ r],E ′〉 | 〈r,E ′〉 ∈ JfopK(E, in[v1], . . . , in[vn])} prog[`] = x = fop(v1, . . . , vn)

Figure 6.6: Concrete semantic function. c is any constant of type A or F and JcK is its

corresponding denotation.

6.3.3 Abstract Properties

Concerto is designed to combine mostly-concrete execution with an abstract interpre-

tation defined as follows. We assume that sets of reaching concrete states are over-

approximated by the complete lattice Ŝ with ordering and least upper bound operator

v
Ŝ

and t
Ŝ

respectively. (We will use vD to indicate a partial order on a domain D.)

The domain of abstract properties, R̂ = L → Ŝ, also forms a complete lattice defined by

the pointwise extension of v
Ŝ

and t
Ŝ
. We further assume that the domain R̂ forms a

Galois connection with the domain of concrete properties R, defined by the abstraction

and concretization functions αA and γA. We use the standard notation R −−−−→←−−−−
αA

γA
R̂ to

denote this connection. The abstract semantics of the abstract interpretation are given

by a monotone abstract semantic function F̂ : R̂ → R̂. We assume that this function is a

sound abstraction of F according to the above Galois connection, i.e., αA ◦ F vR→R̂ F̂ ◦αA,1

1Equivalently, αA ◦ F ◦ γA vR̂→R̂ F̂ or F ◦ γA vR̂→R γA ◦ F̂.

137

F̂(̂r)[`◦ `•] = step+(
⊔

p∈pred(`)
r̂[p], `)t

step
+(⊥, `) ` = s

⊥ o.w.

F̂(̂r)[p• `◦] =



r̂[p◦ p•][x 7→ lop∩ {0,+}] if prog[s] = if x >= 0 goto `∧ lop∩ {0,+} 6= ∅

⊥ if prog[s] = if x <= 0 goto ` ′ ∧ lop∩ {−, 0} = ∅

. . .

r̂[p] o.w.

step+(în, `) =



în[x 7→ în[y]] prog[`] = x = y

în[x 7→ în[y]ĴaopKîn[z]] prog[`] = x = y aop z

în[x 7→ {sign(N)}] prog[`] = x = N

în prog[`] = goto ... ∨ prog[`] = if ...

în[x 7→ >F] prog[`] = x = bcf ∨ prog[`] = x = fop(v1, . . . , vn)

Figure 6.7: The abstract semantics for our running signedness example. In the above, we

use an infix notation for aop as we assume all integer operations are binary. In the step+

function, N is an integer constant; in the definition of F̂, lop is r̂[p◦ p•][x] and s is the

distinguished start label.

whence by [49] we have that αA(lfp F) vR̂ lfp F̂. In other words, the reaching states com-

puted by the least fixed point of F are soundly over-approximated according to αA by

the least fixed point of F̂.

Thus, an abstract interpretation is defined by the 7-tuple 〈R̂; Ŝ; F̂;αA;γA;t
Ŝ
;v

Ŝ
〉where:

R̂ = L→ Ŝ R −−−−→←−−−−
αA

γA
R̂ αA ◦ F vR→R̂ F̂ ◦αA

Example 6.3.2 (Signedness Analysis). The abstract state for the intraprocedural signed-

ness analysis discussed in Section 6.2 is Ŝ = Xf → P(Vf)
> ×Xa → P({−, 0,+}), and αA is

138

defined as:

αA(r)[~̀] =
〈
λx : Xf.{s[x] | 〈s, e〉 ∈ r[~̀]∧ s[x] 6= ⊥V }, λx : Xa.{sign(s[x]) | 〈s, e〉 ∈ r[~̀]}

〉

sign(n) =


+ n > 0

0 n = 0

− n < 0

In the above definitions, Xf is the set of program variables with type in F, Xa are those

with types in A. Intuitively, αA abstracts variables of framework type (i.e., files, strings,

maps, etc.) with sets of concrete values and abstracts integers with the standard signed-

ness domain. We omit the definition of γA as it can be derived from the definition of

αA [49]. The domain P(Vf)
> is the powerset domain of concrete values, extended with a

special >F value, which represents any possible value of type F. We omit the definitions

of v
Ŝ

and t
Ŝ

as they are standard.

The abstract semantic function F̂ is defined in Figure 6.7. We have included only the

comparison rules necessary to verify the program in Figure 6.2. We omit the definitions

for Ĵ+K, Ĵ−K, etc. However Ĵ+K is defined such that {0,+}Ĵ+K{+} = {+}, which again is

sufficient to verify the example in Figure 6.2.

6.4 Combined Interpretation

Given the language, semantic functions, and Galois connection defined in Section 6.3,

we can define an initial, naı̈ve attempt at combined interpretation. Intuitively, this straw-

man combination, which we call Concerto0, analyzes framework code by applying the

concrete semantic function F at framework statements and the abstract semantic func-

tion F̂ at application statements. Concerto0 translates between abstract and concrete

states using explicit abstraction and concretization functions. This approach is sound

(as proved in the following Section 6.4.1) but ultimately infeasible to implement as it

requires materializing infinite sets of states and values. To overcome this limitation, we

139

extend concrete interpretation to mostly-concrete interpretation. Mostly-concrete inter-

pretation avoids materializing infinite sets by using finite abstractions of sets of possible

values. We then define the combination of mostly-concrete and abstract interpretation

used by Concerto and prove it sound. This combination must translate between dif-

ferent state representations. Unlike Concerto0, we do not use explicit abstraction or

concretization functions. Instead we formalize domain transformers which soundly trans-

late between state domains but are weaker than a Galois connection. We close by proving

when Concerto matches or exceeds the precision of plain abstract interpretation.

6.4.1 Naı̈ve Combination

To motivate the need for mostly-concrete interpretation, we elaborate on the strawman

Concerto0 and enumerate why it is impractical as a basis for combined analysis.

Concerto0 executes framework code (statements with label `f) concretely and ab-

stractly interprets application code (statements with label `a). Our initial attempt at

combined interpretation therefore operates over a combined semantic domain that rep-

resents reaching states in the framework with sets of concrete states, and reaching states

in the application with the abstract state domain Ŝ. However, the semantic function F,

which models concrete execution, operates over the fully-concrete domain R. The com-

bined domain is injected into the fully-concrete domain by applying a concretization

function to the abstract states of the combined domain. Symmetrically, to abstractly

execute application code with the abstract semantic function F̂, the combined domain

is injected into the abstract domain by applying an abstraction function to the reach-

ing concrete state component. After injection and applying both semantic functions,

Concerto0 combines the concrete results at framework statements and abstract results

at application statements.

As the combined interpretation uses the highly precise concrete semantics for frame-

work statements (and therefore fops), Concerto0 can, at least in principle, precisely

140

analyze framework code. The concrete interpreter may also use any hypotheses on run-

time environments to gain further precision. For example, if the framework parses a

configuration file as in the example of Section 6.2, the concrete interpreter may simply

open and parse the configuration file directly. However, not all fops will be analysis-time

deterministic, leading to an explosion in reaching concrete states. Further, Concerto0

relies on an explicit concretization function which cannot be implemented in practice.

We formalize the informal description above as follows. First, we partition the space

of L into two sets, LA = {`◦a `•a} ∪ {`•a `◦ | `a ∈ pred(`)} and LF = {`◦f `•f } ∪

{`•f `◦ | `f ∈ pred(`)}. LA are flow edges originating in `a-labeled statements, and

symmetrically for LF and `f. We define this combined domain R0 and an abstraction

function α0 : R→ R0 as:2

R0 = LF → P(S)×LA → Ŝ α0(r) = 〈λ~̀ : LF.r[~̀], λ~̀ : LA.αA(r)[~̀]〉

R0 is a complete lattice with the standard component-wise definitions of least upper

bound and ordering. As α0 is a monotone, complete join morphism there is some γ0

such that R and R0 form a Galois connection. We further assume that the abstract and

concrete states form a Galois connection P(S) −−−→←−−−
αS

γS
Ŝ and that αA = α̇S and γA = γ̇S,

where ḟ denotes the pointwise extension of f. Using αS and γS, the injection functions

described above are defined as:

injR(〈m, m̂〉)[~̀] =

m[~̀] ~̀ ∈ LF

γS(m̂[~̀]) o.w.
inj
R̂
(〈m, m̂〉)[~̀] =

αS(m[~̀]) ~̀ ∈ LF

m̂[~̀] o.w.

We can now define Concerto0’s combined interpretation function C0 : R0 → R0 as:

C0(X) =
〈
F(injR(X))|LF , F̂(inj

R̂
(X))|LA

〉
(6.1)

Theorem 3. C0 is sound, i.e., α0 ◦ F vR→R0 C0 ◦αA.

2The original conference version of this work [185] mistakenly omitted the powerset notation on the
concrete state component of R0 and in the Galois connection below.

141

Proof. By the assumed soundness of F̂, that inj
R̂
◦α0 = αA and that injR ◦α0 is extensive.

Theorem 3 establishes C0 is sound, but that doesn’t mean C0 is a good idea. In

fact, it is not. Using C0 as the basis for combined interpretation is impractical for the

following reasons:

(1) Infinite Sets In many cases, concretizing an abstract state will yield an infinite

number of concrete states. For example, concretizing the abstract state [m 7→ ["b" 7→

"f", "a" 7→ "i"],p 7→ {+}] at the call to dispatch in Section 6.2 yields the following set of

concrete states: ⋃
e∈E

{〈e, [m 7→ ["b" 7→ "f", "a" 7→ "i"],p 7→ n]〉 | n > 0}

The concretization operation cannot be implemented in a meaningful way, as material-

izing this infinite set is clearly impossible.

(2) Nondeterminism Not all framework operations will be deterministic, even with

a priori knowledge about the program’s runtime environment. For example, the exact

user input entered is impossible to know at analysis time. Instead, combined interpre-

tation based on C0 would have to enumerate over all possible values produced in all

environments which is impractical from an implementation perspective.

(3) Exponential Explosion in States Nondeterministic fops whose denotations return

multiple possible results will cause exponential explosions in the number of reaching

states. For example, if n states reach an fop that produces m unique results, the concrete

semantics will generate n ·m result states. This problem is similar to the exponential

state explosion common in symbolic execution.

Instead of combining abstract and concrete interpretation, Concerto combines ab-

stract and mostly-concrete interpretation, which addresses the above limitations. Sec-

tion 6.4.2 describes the semantics of mostly-concrete interpretation, Section 6.4.3 de-

scribes how to combine abstract and mostly-concrete interpretation soundly, and finally

Section 6.4.4 gives our precision result for combined interpretation.

142

6.4.2 Mostly-Concrete Interpretation

Mostly-concrete interpretation introduces the following extensions to concrete interpre-

tation:

Extension 1: The mostly-concrete interpreter supports runtime values that are finite ab-

stractions of (potentially infinite) sets of values. For example, the abstract value {+}

from Section 6.2 is a finite abstraction of an infinite set of numbers. Thus, when

converting from an abstract to mostly-concrete state, Concerto does not need to

materialize an infinite (or unmanageably large) set of concrete values; the abstract

interpretation need only provide these abstractions.

Extension 2: When an fop would yield an infinite or unmanageably large set of values,

the mostly-concrete interpreter may instead use a special “unknown” value that

represents “any possible value.” The mostly-concrete semantics extend the fully

concrete semantics to soundly handle this value.

Extension 3: The mostly-concrete semantic domain is a map from flow edges to a sin-

gle mostly-concrete state, which itself maps program variables to the abstractions

of multiple possible values mentioned in Extension 1 above. Thus, our mostly-

concrete domain cannot track relationships between program variables, i.e., it is

non-relational.

Except for these extensions, the mostly-concrete semantics mirror the concrete semantics

(hence the name). Provided all fops are deterministic and environment agnostic,3 given

a deterministic input state, the results of mostly-concrete and concrete interpretation on

framework code will coincide.

To represent multiple possible values for variables of type F, the mostly-concrete

domain uses powersets of values in Vf extended with a special “unknown” value. For A,

3We say an fop is environment agnostic if it does not depend on the environment model, i.e., ∀e1, e2 ∈
E, v1, . . . , vn ∈ Vf.{v | 〈v, 〉 ∈ JfopK(e1, v1, . . . , vn)} = {v | 〈v, 〉 ∈ JfopK(e2, v1, . . . , vn)}

143

the abstract interpretation provides an abstraction domain Â that satisfies the properties

described in Section 6.4.3. Informally, the Â domain must be non-relational and path-

insensitive. However, the abstract value domain used internally by the AI has no such

restriction.

Formally, the domain of reaching mostly-concrete states R̃ is:

R̃ = L→ S̃ S̃ = (Xf → P(Vf)
>)× (Xa → Â)

As in Example 6.3.2, Xf and Xa are the sets of program variables with types in F and

A respectively. P(Vf)
> is the powerset domain of concrete values in F, extended with

>F, which is the “unknown” value described in Extension 2. The abstractions for vari-

ables with types in A in the mostly-concrete interpreter are drawn from the domain Â

provided by the AI; Â is assumed to form a complete lattice. Â may or may not be used

internally by the abstract interpreter. The domain of S̃ and R̃ form a complete lattice

equipped with the standard pointwise join and ordering operators, as well as top and

bottom values. We further assume that the analysis defines a monotone complete join-

morphism αv : P(Va) → Â that abstracts a set of concrete values of type A to a value in

Â.

Example 6.4.1 (Signedness Analysis). For the signedness analysis, Â is the same domain

as used in the abstract interpretation, P({−, 0,+}). αv is defined as: αv(I) = {sign(i) |

i ∈ I} where sign is defined as in Example 6.3.2. The join and ordering operators are set

union and inclusion respectively. In the example from Section 6.2, Concerto used the

abstract value {+} for the value of arg in dispatch which abstracted the set {n|n > 0}.

Example 6.4.2 (Pentagons). Suppose instead the abstract interpretation of Section 6.2

had used a relational domain like Pentagons [130], which is the interval domain com-

plemented with symbolic upper bounds. Then, Â = Intv, where Intv is the plain interval

144

domain [47]. αv is defined as:

lbN =

−∞ 6 ∃n0 ∈ Z.∀n ∈ N.n0 6 n

min(N) o.w.

ubN =

∞ 6 ∃n0 ∈ Z.∀n ∈ N.n0 > n

max(N) o.w.

αv(I) =

⊥ I = ∅

[lb I, ub I] o.w.

The join and ordering operators are the standard interval union and inclusion opera-

tors. Unlike the above example, we cannot reuse the pentagon domain for Â for reasons

discussed in Section 6.4.3.

We now define an abstraction function αF as follows:

αF(r)[`] =
〈
λx : Xf.V(r[`], x), λx : Xa.αv(V(r[`], x))

〉
Where V is the reaching value set for a set of states and variable, defined as: V(S, x) =

{s[x] | 〈s, 〉 ∈ S∧ s[x] 6= ⊥V }. αF approximates a variable x of type F with exactly the set

of (initialized) values of x. Variables of type A are approximated by applying αv to the

set of reaching values. The approximation for a variable may not depend on the value

of other variables, nor the location at which the variable is being approximated.

As αv is a complete join morphism, αF is also a complete join-morphism, and thus by

[49], there exists some γF such that R −−−→←−−−αF

γF
R̃.

In Figure 6.8, we define the mostly-concrete semantic function I> : R̃ → R̃. The

structure of I> closely mirrors that of the concrete semantic function F. Operations and

comparisons on values from types in F use the same operations as in F, but lifted to

powersets of values. If one of the operands to a comparison is unknown (i.e., >F), then

145

I>(̃r)[`
◦ `•] = step>(

⊔
p∈pred(`)

r̃[p• `◦], `)t

step>(⊥
S̃

, `) ` = s

⊥
S̃

o.w.

I>(̃r)[p
• `◦] =

r̃[p] F̃T(̃r,p• `◦)

⊥ o.w.

F̃T(̃r,p• `◦) =


s̃[x]J̃<=>Ks̃[y] p ∈ `f ∧ prog[p] = if x<=>y goto ` (6.2)

s̃[x]J̃< 6=>Ks̃[y] p ∈ `f ∧ prog[p] = if x<=>y goto ` ′ (6.3)

true o.w. (6.4)

Where s̃ = r̃[p◦ p•] and J̃RK is the lifting of R defined by:

ṽJ̃RK>F >FJ̃RKṽ v ∈ ṽ∧ v ′ ∈ ṽ ′ ∧ vJRKv ′ ⇒ ṽJ̃RKṽ ′

step>(ĩn, `) =



ĩn prog[`] = if ... ∨ goto... (6.5)

ĩn[x 7→ ĩn[y]] prog[`] = x = y (6.6)

ĩn[x 7→ {JbcfK}] prog[`] = x = bcf (6.7)

ĩn[x 7→ J̃fopK(ĩn[v1], . . . , ĩn[vn])] prog[`] = x = fop(v1, . . . , vn) (6.8)

ĩn[x 7→ >
Â
] prog[`] = x = aexp ∧ type(x) = A (6.9)

J̃fopK(f̃1, . . . , f̃n) =


>F f̃1 = >F ∨ . . .∨ f̃n = >F (6.10)⋃
fi∈f̃i
E∈E

{f ′ | 〈f ′, 〉 ∈ JfopK(E, f1, . . . , fn)} o.w. (6.11)

Figure 6.8: Mostly-concrete semantic function. In I>, s is again the distinguished pro-

gram start label.

146

both branches are taken. If any argument to the lifted version of J̃fopK is unknown (i.e.,

>F) then the result is also unknown. Otherwise, the lifted version computes the result

of applying the fop to every possible valuation of arguments in any environment. This

enumeration can yield large (or even infinite sets), but the semantics of Figure 6.8 do not

abstract these sets to the >F value, which simplifies our formal presentation. In practice,

our implementation falls back on >F for infinite or unmanageably large sets of values

(Section 6.7).

Like concrete interpretation, mostly-concrete interpretation can exploit application-

specific knowledge and precisely model fops that would otherwise be treated as non-

deterministic. As described in Section 6.3.1, we model effectively deterministic fops by

introducing hypotheses on the domain of program environments E. Thus, despite taking

the union over E, the definition of J̃fopK uses only environment models consistent with

application-specific information.

Unlike fops, operations on values of types from A are modeled with imprecise, albeit

sound, semantics. Mostly-concrete interpretation can support arbitrary abstractions of

A values precisely because it makes no attempt to interpret aops and therefore does not

need to “understand” the abstraction domain Â. However, Concerto does not suffer

a precision loss from these coarse semantics; due to the state separation hypothesis, all

aops, bca and comparisons over A occur in statements labeled `a, which are modeled in

Concerto with abstract interpretation. In other words, the mostly-concrete semantics

for operations over A values are imprecise, but never actually executed in the mostly-

concrete interpreter.

Theorem 4. αF ◦ F vR→R̃ I> ◦αF, i.e., I> is a sound over-approximation of F.

Proof Sketch. By case analysis on the definitions of stepF and step>. The full proofs are

available in Appendix B.1.1.

147

R = (LF → S̃)× (LA → Ŝ) αC(r) =
〈
λ~̀ : LF.αF(r)[~̀], λ~̀ : LA.αA(r)[~̀]

〉
τ̃ : Ŝ→ S̃ such that: ∀~̀, r : R.αF(r)[~̀] vR̃ τ̃(αA(r)[~̀])

ĩnj : R→ R̃ where: ĩnj
(
〈m̃, m̂〉

)
[~̀] =

m̃[~̀] ~̀ ∈ LF

τ̃(m̂[~̀]) ~̀ ∈ LA

τ̂ : S̃→ Ŝ such that: ∀~̀, r : R.αA(r)[~̀] vŜ τ̂(αF(r)[~̀])

înj : R→ R̂ where: înj
(
〈m̃, m̂〉

)
[~̀] =

m̂[~̀] ~̀ ∈ LA

τ̂(m̃[~̀]) ~̀ ∈ LF

Figure 6.9: The combined mostly-concrete and abstract domain definitions, along with

the domain transformers and derived injection functions.

6.4.3 Combined Abstract and Mostly-Concrete Interpretation

We now show how to combine the mostly-concrete and abstract interpreters. The ap-

proach broadly mirrors the strawman approach from Section 6.4.1. Specifically, com-

bined interpretation operates over a combined domain R. Like its strawman counterpart

R0, R represents reaching states in the application with abstract state Ŝ, but uses mostly-

concrete states S̃ for the framework instead of P(S). Concerto’s combined interpreta-

tion also injects the combined state representation into the “native” formats expected

by the abstract and mostly-concrete interpreters. However, instead of using abstraction

and concretization functions as in Section 6.4.1, we use domain transformers to soundly

translate between state representations without requiring one of the abstract or mostly-

concrete state representation to be more precise than the other.

The combined analysis domain R and an abstraction function αC are defined in Fig-

ure 6.9. As αA and αF are complete join morphisms, αC is itself a complete join mor-

phism, and thus there exists some γC such that R and R form a Galois connection. The

monotone functions τ̃ and τ̂ in Figure 6.9 are the domain transformers described above:

148

τ̃ transforms a state from the abstract interpreter into a mostly-concrete state, and τ̂ per-

forms a transformation in the opposite direction. They are both functions provided by

the analysis that must fulfill the following conditions:

∀~̀, r : R.αA(r)[~̀] vŜ τ̂(αF(r)[~̀]) (6.12) ∀~̀, r : R.αF(r)[~̀] vS̃ τ̃(αA(r)[~̀]) (6.13)

Intuitively, conditions (6.12) and (6.13) state that the transformers must be consistent

with the target domain’s abstraction function. As a consequence, (6.13) implies that any

relational information present in R̂must be discarded when moving to the non-relational

domain R̃. The Â values produced by αF are the result of a non-relational abstraction

function αv, and by the inequality of Equation (6.13), the result of τ̃ can do no better.

Despite this restriction on relational abstractions in the mostly-concrete domain, the

above requirements on the the domain transformers do not provide information about

the relative precision of the two domains. In fact, as mentioned above and illustrated

below, it may not necessarily be the case that one of the domains is more precise than

the other.

Example 6.4.3 (Trivial Transformers). Consider the domain of Example 6.3.2 and the

definition of αv from Example 6.4.1. The two state representations are equal (Ŝ = S̃), and

τ̃ = τ̂ = id. In other words, the two domains have the same expressive power.

Example 6.4.4 (Relational Domain). Suppose instead of representing integers with of

the signedness domain used in Example 6.3.2, we used the Pentagon domain of Ex-

ample 6.4.2 with the corresponding αv and Â = Intv. Then the abstract domain is

Xa → Intv× Xa → P(Xa)× Xf → P(Vf)
>, where the first two components are respec-

tively the interval environment and strict upper bounds of integers described in [130].

This abstract domain has used the P(Vf)
> representation for framework variables. As

with the embedding of Â in the mostly-concrete interpreter, this embedding of mostly-

concrete values into the abstract domain is feasible due to the state separation hypothesis:

i.e., fops will not appear in code analyzed by the abstract interpreter.

149

The domain transformers may be defined as:

τ̃(〈b, s,m〉) = 〈b,m〉 τ̂(〈b,m〉) = 〈b, λx : Xa.∅,m〉

That is, τ̃ discards the relational information from Ŝ when moving to S̃, and τ̂ uses the

top element of the strict upper bound domain in the output (as the input mostly-concrete

state does not have any relational information). In this example, the abstract domain is

more precise, i.e. Ŝ −−→←−−
τ̃

τ̂
S̃.

Example 6.4.5 (Trivial Abstract Domain). Consider a domain Xa → P({−, 0,+})×Xf → 1,

where 1 is unary domain whose single element tt represents “any possible value”, i.e.,

the analysis does not try to reason about maps, strings, or I/O. Then τ̃(〈m, z〉) = 〈m, λx :

Xf.>F〉 and τ̂(〈m, t〉) = 〈m, λx : Xf.tt〉, and S̃ −−→←−−
τ̂

τ̃
Ŝ, i.e., the mostly-concrete domain is

more precise than the abstract domain.

Example 6.4.6 (Mixed Expressiveness). Finally, consider a combination of Examples 6.4.4

and 6.4.5 where integers (i.e., variables in Xa) are modeled in the abstract domain with

pentagons, Â = Intv, and framework types (maps and strings) are modeled with the

highly imprecise domain 1. Then τ̃(〈b, s, z〉) = 〈b, λx : Xf.>F〉 and τ̂(〈b,m〉) = 〈b, λx :

Xa.∅, λx : Xf.tt〉. τ̃ and τ̂ do not form a Galois connection: the abstract domain is more

precise for integers, but the mostly-concrete domain more precisely represents maps and

strings.

We are ready to define the combined interpretation function C : R→ R as follows:

C(X) =
〈
I> ◦ ĩnj(X)|LF , F̂ ◦ înj(X)|LA

〉
(6.14)

This definition closely mirrors Equation (6.1). The injection functions ĩnj and înj (de-

fined in Figure 6.9) take the place of injR and inj
R̂

and translate the combined domain

into R̃ and R̂ by using the domain transformers τ̃ and τ̂ respectively. The fully-concrete

semantic function F has also been replaced with the mostly-concrete semantic function

I>.

We can state the soundness of C according to αC:

150

LB(r)[`◦ `•] = stepLB(tp∈pred(`)r[p
• `◦], `)t

stepLB(⊥
S̃

, s) ` = s

⊥
S̃

o.w.

LB(r)[`•f `◦] = r[`◦f `•f] LB(r)[`•a `◦] = ⊥

stepLB(ĩn, `) =



ĩn prog[`] = if ... ∨ prog[`] = goto ` (6.15)

ĩn[x 7→ ĩn[y]] prog[`] = x = y (6.16)

ĩn[x 7→ ⊥
Â
] prog[`] = x = bca ∨ prog[`] = x = aop(v1, . . . , vn) (6.17)

ĩn[x 7→ >F] prog[`] = x = fop(v1, . . . , vn)∨ prog[`] = x = bcf (6.18)

Figure 6.10: Semantic function defining a lower-bound on the precision of the abstract

interpretation.

Theorem 5. αC ◦ F vR→R C ◦αC

Proof Sketch. By Theorem 4, the assumed soundness of F̂, and from the fact that αF v

ĩnj ◦αC and that αA v înj ◦αC.

As C is a monotone function on a complete lattice it has a least fixed point [180].

From Theorem 5 and [49] we then have that: αC(lfp F) v lfpC.

6.4.4 Conditions for Increased Precision

C is sound, but may not necessarily be more precise than the original function F̂. We

now discuss a set of sufficient conditions for when C is at least as (if not more) precise

as F̂.

First, we define a function LB : R̃ → R̃ as shown in Figure 6.10. Intuitively, LB

provides a lower-bound on the precision of the abstract semantic function; showing

that I> can “do better” than this lower bound will imply that I> provides improved

precision compared to F̂ on framework code. LB specifies an imprecise lower bound for

modeling framework operations and comparisons, but provides no lower bound on the

151

precision for application operations or comparisons. However, as LB is non-relational,

the definition implies that F̂ must also be non-relational.

C is more precise (as defined below) if the following conditions hold:

τ̂ ◦ τ̃ = id LB ◦ ˙̃τ v
R̂→R̃

˙̃τ ◦ F̂ ∀U ⊆ Ŝ.τ̃(tU) = tŝ∈Uτ̃(ŝ) (6.19)

That is, if no precision is lost by moving to the domain S̃ and then back to Ŝ, if LB is a

lower bound on the precision of F̂, and if τ̃ is a complete join morphism. In the above, ˙̃τ

denotes the pointwise extension of τ̃.

As C and F̂ operate over different domains, we first introduce a function p̂roj : R̂→ R

to project the R̂ domain into the combined domain R:

p̂roj(ŝ) = 〈λ~̀ : LF.τ̃(ŝ[~̀]), λ~̀ : LA.ŝ[~̀]〉

p̂roj uses τ̃ to translate abstract to mostly-concrete states, reversing the înj operation.

If the above conditions hold, we can prove:

Theorem 6. înj(lfpC) v
R̂

lfp F̂

Proof Sketch. From the assumptions in Equation (6.19) and by case analysis on step>

and stepLB, it can be shown that C ◦ p̂roj v
R̂→R p̂roj ◦ F̂ (Lemma 6 in appendix Ap-

pendix B.1.3), whence it follows by straightforward transfinite induction (Lemma 7 in

B.1.3) that lfpC vR p̂roj(lfp F̂). As înj is monotone, we have: înj(lfpC) v
R̂
înj◦ p̂roj(lfp F̂),

whence we have înj(lfpC) v
R̂

lfp F̂, as înj ◦ p̂roj = id by Equation (6.19).

Theorem 6 states that the approximation of reaching states computed by the com-

bined interpretation function C is at least as precise as that computed by the abstract

interpreter. The inequality is not strict: whether Concerto matches or exceeds the preci-

sion of plain abstract interpretation depends on the program and the abstract semantics

and domain. As a trivial example, on a program with only application statements (i.e.,

with labels drawn from `a) Concerto will necessarily do no better than plain abstract

interpretation.

152

Example 6.4.7 (Signedness Analysis). The signedness example of Section 6.2 satisfies the

above conditions, and thus combined interpretation with Concerto is at least as precise

as plain abstract interpretation. As both τ̃ and τ̂ are the identity function, parts 1 and 3

of Equation (6.19) are trivially satisfied. The abstract semantic function in Figure 6.7 uses

very coarse approximations of fop operations, and therefore part 2 of Equation (6.19) is

also satisfied.

6.5 Procedures

Our formalism so far does not support procedures, but they are essential. Section 6.5.1

sketches the addition of procedures to our formal language and extensions to the con-

crete and mostly-concrete semantics. Section 6.5.2 then demonstrates that by restricting

control transfers between the framework and application to procedures calls and returns,

Concerto does not need AI developers to provide the full domain transformers (τ̃ and

τ̂) introduced in Section 6.4.3 since it suffices to transform only parameter and return val-

ues across procedure boundaries. We delay until Section 6.8 how to extend our support

for procedures to objects and methods in the style of Java.

6.5.1 Interprocedural Semantics

We assume a program now has the following form, where f ranges over procedure

names:

prog ::= D∗ astmt ::= . . . | return x | x = f(y)

D ::= proc f(p){ (fstmt` | astmt`)∗} fstmt ::= . . . | return x | x = f(y)

We assume that procedure names are distinct, that there is a distinguished main pro-

cedure, and that the distinguished program start label s is the first statement of this

procedure.

For a procedure call statement labeled with `, we assume there are two pseudo-labels:

`c and `r, corresponding to the point in program execution immediately before invoking

153

the function and immediately after the called function returns. We extend the succ and

pred relations to include these pseudo-labels. For a call-site labeled `, if control may flow

from label ` ′ to `, (` ′, `c) ∈ succ, and similarly for (`r, ` ′) and control-flow from ` to ` ′. In

addition, the entry point label of the callee at ` is a successor of `c and the predecessor

of `r is the return site label in the callee.

We extend the state definition to track the runtime stack: R = L → P(S∗ × `∗ × E),

where S∗ is a sequence of states S as defined in Section 6.3.2, and `∗ is a sequence of

statement labels. Intuitively, these two components represent the runtime stack and the

return locations for active procedure invocations respectively. We also assume that the

domain of variables X includes a special return slot ρ.

We extend the definitions of F and I> given in Sections 6.3.2 and 6.4.2 respectively

as shown in Figure 6.11 to handle these new statement forms and flow edges. We omit

the updated definitions of F and I> at the distinguished start label; they are the obvious

extensions to the terms in Figures 6.6 and 6.8. We use ρ to store the return value of

functions with return type F and A: we shall assume that there are two different versions

of ρ of the appropriate type. Finally, V is now defined as: V(S, x) = {s[x] | 〈~s0 ◦ s, , 〉 ∈

S∧ s[x] 6= ⊥V }.

We have proved (see Appendix B.2) that this updated definition of I> is sound with

respect to the updated definition of F. If the abstract interpretation is also sound with

respect to this updated definition, and the τ̃ and τ̂ functions still fulfill the conditions in

Section 6.4 then all the results of the previous section still hold with no modifications to

our formalisms or proofs.

6.5.2 Interprocedural Domain Transformers

We have so far treated procedure call and return as orthogonal to control-flow transfer

between the application and framework, i.e., procedure bodies could be a mix `f and `a

statements. In practice, we require all transfers between the application and framework

154

F(r)[`◦r `•r] =
⊔

p∈pred(`r)
{〈s ◦ sr[x 7→ sc[ρ]],R,E〉 |

〈s ◦ sr ◦ sc,R,E〉 ∈ r[p• `◦r]∧ 〈s ◦ sr,R, 〉 ∈ r[`◦c `•c]}

F(r)[p• `◦r] = {〈s,R,E〉 | 〈s,R ◦ `,E〉 ∈ r[p]}

F(r)[`•c ` ′◦] = {〈s ◦ sr ◦ ιS[p 7→ sr[y]],R ◦ `,E〉 | 〈s ◦ sr,R,E〉 ∈ r[`c]}

F(r)[`◦c `•c] =
⊔

p∈pred(`c)
r[p• `◦c]

stepF(in, `) =

in[ρ 7→ in[x]] prog[`] = return x

as before o.w.

I>(̃r)[`
◦
r `•r] =

⊔
p∈pred(`r)

r̃[`c][x 7→ r̃[p• `◦r][ρ]]

I>(̃r)[p
• `◦r] = r̃[p]

I>(̃r)[`
•
c ` ′◦] = [p 7→ r̃[`c][y]]

I>(̃r)[`
◦
c `•c] =

⊔
p∈pred(`c)

r̃[p• `◦c]

step>(ĩn, `) =

ĩn[ρ 7→ ĩn[x]] prog[`] = return x

as before o.w.

Figure 6.11: Extensions to the semantic functions F and I> to support procedures. In

the above definitions, p is the name of the parameter of the called procedures, y is the

variable passed as the argument, and x is the variable in the caller to which the result of

the function is defined. ιS is a state where all variables are bound to ⊥V .

155

occur at procedure boundaries. In other words, each procedure may only contain `a

statements or `f statements. This restriction is entirely reasonable: real frameworks en-

capsulate their functionality in methods/classes/modules/etc.: source programs would

not mix framework and application code in the same procedure.

This (non-)restriction also significantly simplifies how Concerto transfers values be-

tween abstract and mostly-concrete interpretation. Recall that Concerto applies the do-

main transformers at transitions between the application and framework. However, the

above syntactic restriction implies that Concerto needs the domain transformers only

at procedure entry and exit. Further, at procedure entry, the mostly-concrete interpreter

can access only the program state reachable via the parameters. Thus, instead of using

τ̃ at application-to-framework calls, the AI may directly provide mostly-concrete argu-

ments to the mostly-concrete component, which then binds the arguments in a empty

local state. Similarly, we assume that when given mostly-concrete arguments the abstract

interpreter can construct a sound abstract procedure entry state. (This assumption is pos-

sible because our language is statically scoped and has no global variables, heaps are dis-

cussed in Section 6.8.) As a consequence, instead of using τ̂ at framework-to-application

calls, the mostly-concrete interpreter may provide mostly-concrete arguments to the AI,

which binds them in an abstract empty state, transforming the mostly-concrete values

into a “native” abstract representation as necessary.

Concerto uses a similar process for return flows. The mostly-concrete semantics

use the exit state of a called procedure only to extract the procedure’s return value.

Instead of using τ̃ at return flows from the application to framework, the AI simply

provides a mostly-concrete representation of the return slot ρ. We likewise assume that

the AI is interested only in the value of ρ in callee exit states. Thus, at framework-to-

application return flows, the mostly-concrete interpreter may provide only the mostly-

concrete return value, which the AI transforms into a native representation as necessary.

The direct exchange of values sketched above obviates implementations of τ̃ and τ̂,

but to retain soundness, the values exchanged must be consistent with those produced

156

by some τ̃ and τ̂ that satisfy the definitions given in Section 6.4.3. For example, consider

an application-to-framework call where the abstract entry state is ŝ. The mostly-concrete

argument provided to the mostly-concrete interpreter must therefore be τ̃(ŝ)[p] for some

τ̃, and where p is the parameter of the called procedure. Thus, any valid domain trans-

formers τ̃ and τ̂ provide correctness specifications for the exchange of values. However,

a trivial way to ensure soundness is to generate complete definitions for some τ̃ and

τ̂, and hand-simplify the results of applying the transformers at procedure call and

return. For example, to correctly generate mostly-concrete return values at application-

to-framework return flows, it is sufficient to use a simplification of λŝ.τ̃(ŝ)[ρ].

Context Sensitivity The above discussion does not treat context-sensitivity in the ab-

stract interpretation. In our implementation we have the AI provide functions to com-

pute the callee context at framework-to-application calls (Section 6.8.3). Further the

mostly-concrete semantics in Figure 6.11 are context-insensitive, which is not very precise.

In practice, we unroll the call-graph up to recursive cycles in the mostly-concrete inter-

preter, effectively giving unlimited context-sensitivity. We discuss these two techniques

in Section 6.8.3. We have not formalized our approach to context-sensitivity, although

adapting our proofs and formalism is a straightforward, albeit tedious, extension.

6.6 Iteration Strategy

We now briefly describe the iteration strategy used by Concerto. Our implementation

runs mostly-concrete and abstract interpreters in parallel until they converge to a lo-

cal fixed-point on their respective partitions of the program (framework and application

code respectively). The results are then exchanged between the two interpreters (under

the syntactic restriction of Section 6.5.2, this exchange is performed at procedure bound-

aries as described above) and the process repeats until the overall process converges to a

fixed-point. We refer to this process as subfixpoint iteration.

The subfixpoint iteration scheme sketched above is very similar to chaotic asyn-

157

chronous iteration with memory [46], with one key difference. Before starting iteration

in the mostly-concrete component, subfixpoint iteration discards results at framework

statements computed in previous rounds of subfixpoint iteration. In other words, after

exchanging information with the abstract interpretation component, the mostly-concrete

component iterates a “fresh” mostly-concrete interpreter, seeded with only information

received from the abstract interpreter. We have shown in Appendix B.3 that this process

converges to the least fixed point of C. Our proof depends on the following property of

subfixpoint iteration (Lemma 21 in the appendix): any information discarded between

runs of the mostly-concrete interpreter can be soundly recovered with enough iterations

in the next run of the mostly-concrete interpreter.

This iteration strategy justifies analyzing application-to-framework calls by spawn-

ing a fresh mostly-concrete interpreter seeded with mostly-concrete arguments that flow

into the framework from the application provided by the AI. We describe this process in

more detail in Section 6.8.

6.7 Widening and Finitization

Two significant challenges remain to a realizable implementation. First, although we

have proved that subfixpoint iteration converges to the least fixed point of C, it may

not do so in finite time; the domain R does not possess an ascending chain condition

that will ensure convergence in finite steps. Second, we have not yet guaranteed that

mostly-concrete interpretation manipulates only finite sets of values. To address the

first issue, we apply widening [47] during iteration. We address the second issue by

forbidding infinite sets of values, and describe how the mostly-concrete interpreter uses

>F in practice to avoid materializing infinite sets.

Widening Following the vocabulary of [27], we require two widening point sets WA and

WF for application and framework statements, respectively. A widening point set is a set

of statement labels such that, if during iteration the states at all widening points stabilize,

158

then the overall iteration stabilizes in a finite number of steps. We further require that

if the states at all widening points in two iteration sequences stabilize to the same set

of values, then the two sequences stabilize to the same result. We leave the choice of

WA up to the abstract interpretation, although we expect most interpreters will use a

variation on the strategy described by [27]. In our mostly-concrete interpreter, we use

the headers of unbounded loops and the entry point of a representative method selected

from recursive cycles (including sub-cycles).

We assume that the analysis provides widening operators OÂ for values of type Â

and Ô for abstract states Ŝ. From OÂ, we derive a widening operator for mostly-concrete

states:

〈mf,ma〉Õ〈m ′f,m ′a〉 =
〈(
λx : Xf.

mf m ′f[x] v mf[x]

>F o.w.

)
,
(
λx : Xa.ma[x]OÂm

′
a[x]
)〉

Given the above assumptions and definitions, we ensure termination as follows. We

again iterate the abstract and mostly-concrete interpreters in parallel, except we instru-

ment the abstract semantic function F̂ and I> to apply widening operations at the loca-

tions in the widening point sets WA and WF respectively. We have proved (Appendix B.4)

that these individual iterations terminate in a finite number of steps. After the two inter-

preters stabilize, they exchange results and the process repeats; with the mostly-concrete

interpreter again discarding previously computed information as described above. This

process stabilizes in a finite number of steps to an over-approximation of lfpC (see Ap-

pendix B.4.1).

Precision Section 6.4.4 gave conditions for when lfpC will be at least as precise as lfp F̂.

Whether this precision result also translates to the widened subfixpoint iteration pre-

sented above will depend on the choice of widening operators. As widening operators

are not necessarily monotone, the instrumented F̂ and I> functions are not necessarily

monotone either. Without monotonicity, reasoning about the relative precision of sub-

fixpoint iteration with widening is difficult. This result is not surprising; as noted in

159

[50], when using widening the order of iteration can have a significant impact on the

precision of the final result.

Finitization Finally, to ensure Concerto manipulates only finite sets, we require that

the AI does not provide infinite argument or return value representations to the mostly-

concrete interpreter. We also extend the definition of I> to finitize the result of all fop

operations. Whenever applying fop to two arguments would produce an infinite set

of values (or an otherwise impractically large set, e.g., all 32-bit machine integers) the

modified semantic function abstracts this set with >F. This finitization is sound (see

Comment 8.1 in Appendix B.1.1), while avoiding materializing infinite sets in our imple-

mentation.

6.8 Extensions for a Realistic Prototype

We have implemented a prototype combined interpreter for a subset of Java.4 Our subset

includes 1. interfaces and dynamic dispatch, 2. reflection, 3. dynamically sized arrays,

and 4. statically unbounded loops. We include two primitives to simulate I/O. The first,

read(), reads an integer from a deterministic stream. This primitive models reading

from a deterministic configuration file. The second primitive, nondet() reads from a

nondeterministic stream, which simulates, e.g., packets received from the network or

user input. While falling considerably short of the full complexity of Java, we can use

these language features to effectively simulate some of the most difficult to analyze code

idioms we have encountered in real-world framework implementations (see Section 6.9).

Our prototype takes as input an abstract interpretation implementation which ex-

poses basic operations required by Concerto. We introduce these operations incremen-

tally as we extend our basic procedural language to support objects, methods, etc.

4Our implementation prototype is open-source and is available at https://github.com/uwplse/
concerto.

https://github.com/uwplse/concerto
https://github.com/uwplse/concerto

160

6.8.1 Objects and the Heap

We first consider only class-based objects with fields, deferring methods to Section 6.8.2

and primitives, interfaces, and libraries to Section 6.8.4. We assume each concrete class

belongs either to the framework or the application, taking F to be the framework classes

and A the application classes. We also extend our concrete state to include a concrete

heap: S = E× (X → V)×H. Object allocation and field manipulation are defined via

aops and fops that additionally side-effect the heap (we leave a full formalization to fu-

ture work). This formulation implies that framework code may not directly manipulate

the object fields of application classes and vice versa. However, as argued in Section 6.2,

real-world applications and frameworks almost exclusively communicate via functional

interfaces.

By classifying each class as either framework or application, we can effectively par-

tition the program’s runtime heap H into Ha containing application objects and Hf con-

taining framework objects, i.e., S = E× (X → V)×Ha ×Hf. We can then use different

abstractions for Ha and Hf.

In the mostly-concrete interpreter, object operations on framework classes manipu-

late mostly-concrete heaps of type H̃f.5 H̃f is equipped with join, ordering, and widening

operators. The mostly-concrete interpreter does not use its own abstraction for Ha, using

one provided by the abstract interpreter (see below). Similarly, in the abstract interpreter,

object operations on application classes operate on an abstract representation of Ha, i.e.,

the application heap component.6 Concerto does not make any assumptions on the in-

ternal heap representation used by the abstract interpretation. However, the abstract in-

terpretation must provide two functions: projectH : Ŝ→ Ĥa and injectH : Ĥa → Ŝ→ Ŝ

such that ∀ŝ.ŝ v
Ŝ

injectH (projectH ŝ) ŝ for some type Ĥa defined by the analysis. The

5We do not use a fully concrete heap to handle object allocations in unbounded loops. Our widening
operator detects such cases and introduces mostly-concrete summary objects where appropriate.
6Technically, the abstract interpretation may also operate on an abstraction of Hf. However, all object

operations that mutate Hf are modeled by the mostly-concrete interpreter, so in practice the abstract
interpreter only uses an abstraction of Ha.

161

AI must provide widening, join, and ordering operations for Ĥa.

To tie these two heap representations together, we extend the mostly-concrete state

representation to include mostly-concrete and abstract heaps: S̃ = (Xf → P(Vf)
>) ×

(Xa → Â)× H̃f × Ĥa. Vf is the domain of mostly-concrete heap locations, and Â is an

abstract representation of objects of type A. During execution, the mostly-concrete in-

terpreter updates the mostly-concrete heap and threads the abstract heap representation

through unchanged. Concerto requires that the abstract interpreter also threads the

mostly-concrete heap through its interpretation. To ensure the concrete heap is correctly

handled, the abstract interpretation must operate over an instrumented state representa-

tion, Ŝ×Hf. We provide APIs for the AI to manipulate this instrumented representation.

The approach described so far does not allow for framework objects to store ref-

erences to application objects and vice versa. To relax this restriction, we require the

abstract interpretation meets some additional conditions. First, the abstract heap must

represent fields and variables with type F with the domain P(Vf)
>. Next, when perform-

ing a write of v ′ : P(Vf)
> to a field/variable of type F with the existing value v : P(Vf)

>,

the value v ′′ of the field/variable after the write must satisfy the constraint v ′′ v v ′ t v,

i.e., the new value is bounded above by the result from a weak update. This requirement

ensures that the abstract interpretation never produces mostly-concrete object locations

“out of thin air” that may not have yet been allocated in the mostly-concrete heap compo-

nent. A similar concern exists when storing values of type A into the concrete heap: any

abstractions stored into the concrete heap must remain valid, and updates via aliasing

should be propagated to these values. A sufficient condition is for the abstract inter-

preter to internally use an abstract heap L̂oc ⇀ Ô where L̂oc is a finite domain of abstract

locations and Ô are abstract objects, and to take Â = P(L̂oc) and Ĥa = L̂oc ⇀ Ô.

162

6.8.2 Methods and Domain Transformers

We require that methods in application classes contain only application code, and simi-

larly for framework classes. As described in Section 6.5.2, this (non-)restriction ensures

that values change representation only at method boundaries.

For framework-to-application calls, the abstract interpreter must expose a method

interpret that analyzes a method m in context C (see below), with mostly-concrete ar-

guments a1,a2, . . . ,an, and abstract receiver r̂. When Concerto encounters a method

call in the mostly-concrete interpreter with a base pointer r̂ of type Â (i.e., static type

A), it yields into the abstract interpreter by passing the mostly-concrete arguments, ab-

stract receiver, and a computed context C to interpret. interpret is responsible for

constructing an initial abstract state for m and then performing abstract interpretation

over the method body. When analysis of m is complete, interpret returns a mostly-

concrete representation of the return value. This process mirrors the one described in

Section 6.5.2. However, Concerto additionally instruments the above process to inject

the caller’s mostly-concrete and abstract heaps into the callee abstract state, and similarly

extract the abstract and mostly-concrete heaps from the abstract exit state.

Concerto also provides an API for the AI to yield into the mostly-concrete inter-

preter when it encounters a call back into the framework. The AI calls this API method

with a mostly-concrete receiver and arguments as well as the abstract caller state. The

mostly-concrete interpreter extracts the two heaps from this caller state, binds the ar-

gument and receiver values, and begins executing the called method. When execution

of the method completes, Concerto injects the resulting mostly-concrete and abstract

heaps into the provided abstract caller state, and returns this updated state and a mostly-

concrete return value to the AI.

163

6.8.3 Context-Sensitivity and Mostly-Concrete Interpretation

Concerto supports context-sensitive analyses. Our implementation is polymorphic over

the type of contexts, leaving the representation entirely to the client abstract interpreta-

tion. When computing the context for an application method call, Concerto passes

information about the current state, call site, and call stack to a mkContext method ex-

posed by the AI. mkContext is responsible for computing the analysis context C for the

method call and returning it to Concerto, which passes the computed context to the

interpret function as described above.

At application-to-framework calls, Concerto spawns a fresh mostly-concrete inter-

preter and runs it until the called method returns. Where possible, this interpreter

unrolls all statically bounded loops and unfolds the call-graph (effectively giving unlim-

ited context-sensitivity and some path-sensitivity). However, due to nondeterministic

program inputs or imprecision in the abstract interpreter, mostly-concrete interpretation

may encounter nondeterministic conditionals, loops, and unbounded recursive cycles.

To handle nondeterministic choice, Concerto could fork two interpreters and con-

tinue execution down each path in parallel as in Klee [35] or Java PathFinder [30]. While

sound, this approach would encounter the exponential explosion of paths common

in symbolic execution. Instead, Concerto forks two interpreters at nondeterministic

branches and executes both branches in parallel up to the conditional control-flow join

point. At the control-flow join point, the two interpreter’s states are joined and execution

continues along a single thread of execution.

To ensure termination in the presence of nondeterministic loops or unbounded re-

cursion, the mostly-concrete interpreter is instrumented to detect potentially infinite

loop unrolling or call-graph unfolding and then falls back on over-approximation us-

ing widening.

164

6.8.4 Allowing State Separation Violations

The state separation hypothesis applies to the language presented thus far; the choice

of whether a variable is modeled by an abstract value or mostly-concrete value could

be made based on types, and operations on abstract values can only occur in the ab-

stract interpreter and similarly for mostly-concrete values. However, the state separation

hypothesis is violated if we add primitive types, interfaces, and common library types

such as Hashtable to our supported subset of Java; e.g., frameworks may interrogate or

modify an integer produced by application code. Although we could restrict the use of

primitives and libraries to only application or framework code, and further require that

all implementers of an interface must be either application or framework classes, such a

restriction would be unrealistic. We therefore describe how to handle these features as

well as direct mutation of application objects by the framework and vice versa.

Primitive Types and Operations

Our limited subset of Java supports only integers with basic arithmetic operations and

comparisons. Integer values are represented in the mostly-concrete interpreter with a

sum type: P(N)> + Â. When an integer abstraction of type Â flows into a framework

method we automatically lift it into the sum type. We use Â as the abstract representation

of objects and integers: in practice we expect that internally Â is a union of objects and

integers abstractions.

When executing an arithmetic or comparison operation, Concerto checks if both

operands are of type P(N)>. If so, then the interpreter executes the concrete arithmetic

operation lifted to the P(N)> domain. If one or both of the operands are of type Â,

then Concerto uses a lift : P(N)> → Â method exported by the abstract interpreter to

convert the powerset representation into an Â representation. A sound choice for such

a method is to simply return the top element for integers in Â. After conversion, Con-

certo calls methods exposed by the abstract interpretation that perform the primitive

165

operations on elements of Â, e.g. plus : Â → Â → Â, minus : Â → Â → Â, etc. As with

the lift operation, a sound choice for these functions is to return the maximal element

for integers in Â. Finally, in cases such as array indexing, Concerto may need to trans-

form P(N)> + Â into P(N)>. The abstract interpretation must also expose a function

lower : Â→ P(N)>. A sound choice for this function is to simply return >F.

At calls from the framework into the application, Concerto passes the sum repre-

sentation directly to the abstract interpretation which may lift this sum type into a native

representation. In practice, abstract interpretations gain precision by using the sum rep-

resentation for integers, and lifting to a native representation on demand for arithmetic

and comparison operations.

Interfaces and Library Types

An interface I may have implementers in the application and the framework. Thus,

given a variable/field of type I, it may be statically unknown whether that variable/field

contains an instance of a framework or application class. We resolve this ambiguity by

requiring that the abstract interpretation and mostly-concrete interpreter use a combined

object representation P(Vf)× Â for values with an interface type. Intuitively, 〈vf, â〉 :

P(Vf)
>× Â represents either a framework object that is abstracted by vf or an application

object abstracted by â. In the case that one of the components is the least element in its

respective lattice then the interpretation of combined value is the interpretation of the

non-bottom component. In principle, we could have used this product representation for

primitive types, but found that in practice the sum type representation is easier to use.

When the mostly-concrete interpreter encounters a method call on an interface, it

splits the receiver into its two components, and then performs a concrete method call on

the concrete component while simultaneously performing the abstract method call by

yielding into the abstract interpreter. The results from both method calls are then merged

using the appropriate join operations and execution continues. Concerto exports an

166

API that performs the symmetric operation for interface calls encountered in application

code by the abstract interpreter.

Both framework and application code may use the same standard libraries, breaking

our simplifying assumption that the types used in the application and framework are

disjoint. For example, Java types like ArrayList, HashMap, etc. are ubiquitous. Concerto

supports these library types using the same product representation used for interfaces.

Unlike interfaces, the choice of whether to model library objects using a mostly-concrete

or abstract representation is not based on static type information, but on the alloca-

tion site. For example, an ArrayList allocated in the application will be modeled using

abstract values, whereas an ArrayList allocated in the framework will be modeled mostly-

concretely. This approach is possible because we assume that library types, like inter-

faces, only export object-oriented interfaces and Concerto does not need to support

framework code that directly modifies the internal state of a library objects allocated in

the application and vice versa.

Direct Field Access

We have so far assumed that the framework never directly accesses or mutates applica-

tion object fields and vice-versa. As argued in Section 6.2, we expect this assumption

holds for the vast majority framework-based applications. However, our approach can

still be applied in the cases where the assumption does not hold, albeit with some pre-

cision penalty. We describe how to extend our implementation to support framework

code that reads and writes application object fields; the approach for the application

code directly accessing framework fields is symmetric.

We first consider the case where framework code reads an application object field. Re-

call that we model operations on application fields as aops and that we use an extremely

coarse model for aops in our mostly-concrete semantics. Thus, we can soundly model

reads of application object fields as simply returning the maximal element from the ap-

167

propriate lattice. For example, the mostly-concrete interpreter may use >
Â

to model the

value read from a field of application type. Any future operations on this read value

will necessarily be imprecise; the exact extent of this imprecision will depend on how

the read value is used by the program.

Our approach for handling direct mutations of application fields is broadly similar.

As field writes are modeled as aops that side effect the abstract heap, mutations are

coarsely modeled by simply havocing the abstract heap, i.e. the interpretation of a field

write returns >
Ĥa

, where Ĥa is the domain of abstract heaps. This coarse approach will

cause greater imprecision compared to the field read case above, but we contend that

direct field mutations are exceedingly rare in practice. As frameworks and applications

are developed independently from one another, the framework implementation cannot

guarantee any application-specific object invariants are preserved by a field mutation.

A similar argument applies for direct mutations of framework field by the application

code. Thus, we expect any imprecision introduced by this coarse modeling to be limited

for real-world applications.

6.9 Evaluation

To evaluate the feasibility and benefits of our combined analysis approach, we imple-

mented a small “web application framework” called Yawn (Your Analysis’ Worst Night-

mare) in the subset of Java supported by our prototype implementation. Yawn im-

plements an accept loop which parses requests received on our language’s nondeter-

ministic I/O stream and routes these requests to application defined handlers. Yawn

contains several difficult-to-analyze features found in real-world frameworks, including

dependency injection, an embedded Lisp interpreter, and indirect flow. The dependency

injection component and the Lisp interpreter heavily used reflection, and the run-time

behavior of all three features is determined by the contents of a configuration file.

We implemented a simple application using the Yawn framework. The application’s

primary functionality is implemented as a collection of request handlers which perform

168

simple mathematical operations (e.g., summing two integers) on request parameters. The

application uses in-memory state and a simulated database layer implemented as stan-

dalone modules. These handlers and modules are constructed and wired together using

Yawn’s dependency injection mechanism. Yawn also includes a filtering mechanism to

preprocess requests. Our application applies a filter that uses Yawn’s embedded Lisp

interpreter to run a filtering program specified in the application’s configuration file.

Next, we implemented three abstract interpreters that use different abstract domains,

heap representations, and context sensitivity. These analyses are summarized in Ta-

ble 6.1. Pta performs VTA-style [178] call-graph construction using a type-based heap

where abstract addresses are sets of type names. IFlow is an information flow integrity

analysis [62] to find flows from untrusted sources to sensitive sinks. It uses the caller

method as the context when analyzing a callee. For the heap abstraction, IFlow reuses

the type-based heap from the Pta interpreter, and extends the reaching type domain

with k-limited access paths [63, 100] that track which heap locations are tainted. Finally,

the most complex (and expensive) analysis is Abc, an array bounds checker. Abc uses

call site 1-CFA for contexts, and uses an abstract heap that maps abstract locations to ab-

stract objects. An abstract location is pair consisting of an allocation site and the context

in which the allocation occurred. Object values are abstracted by powersets of abstract

locations. Integers are abstracted with an approximation of the reduced product [49] of

the Interval domain Intv and inequalities between access paths, giving a weakly rela-

tional Pentagon domain [130]. As the choice of Â must be non-relational, the abstract

representation of integers in Â is simply Intv. Abc also propagates inequalities induced

by comparison operators making it partially path sensitive.

Finally, we ran each interpreter over the application twice: once using Concerto

and once with standard abstract interpretation. Each run had a one hour time budget,

and we measured the total time of each run. After each run, we collected call-graph

information (Pta) or any alarms reported (Abc & IFlow). In the event of a timeout, we

collected any information computed up to that point.

169

Table 6.1: Summary of abstract interpretations. CS is the context-sensitivity of the anal-

ysis if applicable. PS indicates if the analysis is path-sensitive.

Name CS? Heap Domain Relational? PS?

Pta No Type-based Reaching Types No No

IFlow Caller Method Type-based Access Paths/Reaching Types No No

Abc Call site 1-CFA Abstract Location Pentagons/Abstract Locations Yes Yes

Table 6.2: Number of reports issued and execution times of the interpreters with (Conc.)

and without (Std. AI) Concerto. t/o indicates a timeout. For a discussion of the Pta

results, see the main text.

Analysis Time (Conc.) Time (Std. AI) Reports (Conc.) Reports (Std. AI)

Pta 4.7 s 1282.7 s — —

Abc 8.8 s t/o 0 2

IFlow 4.6 s t/o 3 7

170

For every analysis, Concerto vastly outperformed plain abstract interpretation as

shown in Table 6.2. Under plain abstract interpretation, Abc and IFlow timed out while

Pta took approximately 275× longer than combined interpretation. The Abc and IFlow

timeouts were caused by enormous strongly connected components due to sound but

imprecise modeling of Yawn’s use of reflection and indirection. Even with widening,

propagating information through these cycles overwhelmed the abstract interpreters.

Pta also encountered large strongly connected components, but the lack of context-

sensitivity and simplicity of the abstract domains mitigated the performance impacts.

Further, the quality of analysis results was significantly worse with plain interpreta-

tion compared to Concerto. To evaluate the precision of Abc and IFlow, we classified

the alarms reported as either true or false positives. Combined interpretation correctly

found all 3 information leaks in our test application and also successfully verified that

the application was free of out-of-bounds array accesses. In contrast, plain abstract in-

terpretation reported 7 leaks and and 2 out-of-bounds accesses, respectively. For the

array bounds checker, all these reports were false positives, and all but 3 were false posi-

tives for the information flow analysis. Additionally, as these results were collected after

timeouts, they represent a lower bound on the imprecision of Abc and IFlow.

Pta does not find bugs, but produces a call-graph for a downstream analysis; we

include it in our experiments to demonstrate the impact of combined interpretation on

resolving reflective invocations in framework code. As a representative example, under

plain interpretation Pta resolved the reflective allocations in the dependency injection

facility to 38 possible types, compared to just 15 types under combined interpretation.

Similarly, within the Lisp interpreter, plain interpretation resolved the reflective invo-

cations to as many as 30 and no fewer than 8 callees, whereas combined interpretation

resolved every invocation to a single callee.

171

6.10 Conclusion

In this chapter we presented Concerto, a framework for soundly combining concrete

and abstract interpretation. Concerto targets framework-based applications that use

difficult-to-analyze reflection, metaprogramming, and abstractions. This combination

is possible because framework-based applications in practice satisfy a state separation

hypothesis which Concerto exploits to opaquely embed abstract values into a mostly-

concrete interpreter. Our combination supports any abstract interpreter that satisfies a

modest set of conditions, and yields significant improvements in initial experiments with

a research prototype.

172

Chapter 7

SUPPORTING THE FULL JVM

7.1 Introduction

The combined interpretation approach of Concerto described in Chapter 6 is a first

step in supporting the analysis of framework-based applications. As mentioned in Sec-

tion 6.9, the Yawn framework used in Concerto’s evaluation supported many features

found in real-world Java frameworks. However, the language supported by Concerto

is significantly simpler than Java. The following is a non-exhaustive list of Java features

Concerto does not support:

1. Strings

2. Exceptions

3. Concurrency

4. File I/O

5. Native Extensions

6. Subclassing

7. Class Loaders

8. invokedynamic

9. Full Reflection API

Although Yawn used a simple reflective facility provided by our proof-of-concept

implementation, this API had considerably less functionality than Java’s. Similarly, the

input primitives of the Concerto implementation provided read access to only two

173

streams of integers, one of which was deterministic, the other nondeterministic. The

only output primitive wrote objects to the console; we did not support reading or writing

files. These facilities are considerably simpler than the I/O features provided by Java,

which support opening network sockets, reading and writing arbitrary file systems, etc.

Extending the existing Concerto implementation to handle the full complexity of

Java, while technically possible, is likely infeasible in practice. The Concerto interpreter

is written in Java and uses the HashMap class to represent a program’s heap. As a result, the

host JVM memory overhead for each object allocation in a guest program is extremely

high. The lattice and widening operations on heaps also walk the entire concrete object

graph. Although Yawn and our simple web application were not large or complex

enough to manifest any significant slowdowns, it is unlikely the simple approach taken

by Concerto would scale to a large, full-featured Java framework.

Further, even if we extend Concerto to support the full set of Java’s bytecode in-

structions, the resulting system would be unable to run many Java applications. Almost

every Java application relies on at least some parts of the Java Class Library [1], which

internally uses several native operations that must be supported by the host JVM im-

plementation. Thus, using existing Java Class Library distributions (such as the one

shipped with OpenJDK) on Concerto would require several hundred native method

implementations.

Due to the drawbacks sketched above, we have begun preliminary work on a project

to support the full JVM and Java language that is not based on our Concerto imple-

mentation. This project (called Symphony) builds on the infrastructure developed for

Java Path Finder (JPF) [30]. Unfortunately, supporting the full Java language, Java Class

Library, and JVM features is a multi-year effort that is likely worthy of its own disser-

tation. This chapter describes the current state of Symphony and the work remaining.

Section 7.2 describes the features of Java Path Finder that make it a suitable starting point

for the Symphony project. Section 7.3 describes the state of the Symphony project and

the technical achievements accomplished thus far. Section 7.4 describes a novel analy-

174

sis scheduling algorithm we have developed for use in Symphony. Finally, Section 7.5

describes the technical, engineering, and research challenges that must be overcome to

complete the Symphony project and sketches potential solutions.

7.2 Java Path Finder

Java Path Finder was developed as an explicit state model checker for Java programs,

although later work generalized the infrastructure to support symbolic values. Like

Concerto, Java Path Finder is an implementation of the JVM written in Java that itself

runs on a host JVM. Java Path Finder supports several features necessary for combined

interpretation over the full Java language that are currently missing from or naı̈vely

implemented in Concerto:

1. Heap Reification: Unlike techniques built on the JVM (see below), Java Path Finder

has a well tested, efficient in-memory representation of concrete heaps and objects

that support freezing and copy-on-write. When embedding a concrete heap into

an abstract interpreter’s state (see Section 6.8.1) we can simply embed a reference

to an immutable instance of JPF’s heap representation.

2. Execution Rollback: JPF can save the guest JVM state at arbitrary points into a

self-contained memento object. JPF can use a previously saved memento to restore

JVM state to the exact machine state when the memento was created. Unlike na-

tive approaches (discussed below), these mementos are first class objects and can

be embedded into an abstract interpreter as a continuation or into a worklist for

processing.

3. Execution Forking: When analyzing a program, JPF uses choice generators to ex-

haustively explore multiple possible paths of execution. Each choice generator

represents a finite number of possible choices a program could make, e.g., possi-

ble program input values, thread scheduling choices, etc. The Symphony project

175

can leverage this choice generator infrastructure to support forking execution at

nondeterministic conditionals as described in Section 6.8.3.

4. Symbolic Values: JPF supports an attribute API, which tracks arbitrary data at-

tached to program values, threads, stack frames, and objects. JPF automatically

transfers and duplicates these attributes as host values move through the program.

We can use this infrastructure to embed abstract values or sets of concrete values

into the concrete state.

5. Native Library Support: The JPF project includes implementations of a large por-

tion of the native methods depended upon by the Java Class Library. These native

method implementations are written in Java, run in JPF’s host VM, and have access

to the internal state of the simulated VM.

6. Extensible Semantics: JPF allows replacing the standard semantics of bytecode

instructions with instrumented versions. This functionality allows us to naturally

extend operations over concrete values to handle abstract values, intercept method

calls with abstract receiver objects to switch to abstract interpretation, etc.

We briefly considered adapting techniques that do not require a reimplementation

of the JVM. In particular, we briefly experimented with the CROCHET tool [18], which

supports snapshot and rollback on stock JVMs. Under an approach based on CRO-

CHET, framework code could execute on a native JVM, using CROCHET for forking

and rollback support. Running framework code on the native JVM would not require

reimplementations of the native methods used by the Java Class Library. Further, CRO-

CHET has a very low overhead which could yield better performance over running the

framework code inside of a simulated JVM that itself runs on a JVM.

However, despite the above benefits, we ultimately rejected this approach as CRO-

CHET does not (at the time of writing) support first class snapshots: the saved program

176

state is stored in hidden object fields inserted via bytecode instrumentation. CROCHET

also cannot support multiple snapshots out-of-the-box, nor do we gain the benefit of

first-class heap snapshots.

Beyond the apparent limitations of CROCHET, running the framework code on a

standard JVM itself has several drawbacks. First, supporting symbolic values (i.e., em-

bedded abstract values and the mostly-concrete representation of framework values)

would require heavyweight bytecode instrumentation. In particular, storing symbolic

primitive values would require the expensive (in terms of storage and runtime over-

head) Phosphor [17] instrumentation used in Staccato. Instrumenting the framework

implementation to correctly manipulate and handle these symbolic values would require

even further instrumentation. It is likely that the overhead introduced by these multi-

ple instrumentation passes would erase the performance benefits of running framework

code on a “native” JVM. Finally, based on our experience with Staccato, the compo-

sition of multiple low-level bytecode instrumentations is extremely tricky and requires

close cooperation between all instrumentation passes. Thus, we rejected all techniques

involving running the framework code directly on a stock JVM.

7.3 Current Progress

Symphony supports a significant subset of the mostly-concrete semantics implemented

within Concerto. In particular, our implementation supports: sets of potential values

(i.e., P(Vf)), the special unknown > value, summary objects, loop approximation, and

forking/joining paths of execution. In the remainder of this section, we briefly sketch

how we have implemented these features within the JPF infrastructure.

7.3.1 Value Sets and Heaps

Symphony uses the attribute API to record when fields/variables/etc. have multiple pos-

sible values or a completely nondeterministic value. Symphony overrides the default se-

177

mantics for bytecode operations to handle nondeterministic operands or operands with

multiple possible values. As in Section 6.8, we lift the arithmetic operations to handle all

combinations of potential input values. Further, any arithmetic/comparison operation

with at least one nondeterministic operand yields a nondeterministic result.

For load operations with multiple possible base pointers, Symphony combines the re-

sults of reading the field from each possible base pointer. During a field store, multiple

base pointers represent uncertainty about the precise object whose field is being up-

dated. Thus, Symphony weakly updates the field of each possible object. To handle array

operations, Symphony must also account for nondeterministic or multiple possible array

indices. In the case of array loads, Symphony collects the values at all possible array in-

dices (or all array indices for a nondeterministic index operand) from all possible array

pointers. For array stores, Symphony performs a weak update of all possible indices for

all possible array pointers. Updates on summary objects (introduced by widening, see

below) are always weak. Note that these nonstandard semantics are straightforward to

implement due to JPF’s extensible bytecode semantics.

To represent the concrete heap, we adapt the approach used in Concerto. For each

object allocation site, we compute the allocation context which consists of the stack trace

from main() to the allocation site and the allocated type. We associate each context with

a counter. At each allocation in a context C, we increment C’s counter yielding the in-

teger v. The tuple 〈C, v〉 serves to uniquely identify an allocation, i.e., a heap location.

The default heap implementation provided by JPF uses a similar approach, so adapting

Concerto’s approach to the JPF infrastructure was relatively straightforward. We fur-

ther extend the above scheme to handle object allocations within nondeterministic loops.

Our widening operator detects if an allocation context C occurs within a nondeterminis-

tic loop and sets the corresponding counter to >. Any future allocations at C will return

the heap location 〈C,>〉 which points to a summary object. This summary object repre-

sents the infinite set of objects allocated at C. As such, all updates on a summary object

are weak.

178

7.3.2 Forking/Joining Execution

As mentioned in Section 7.2, JPF has extensive support for forking a single path of execu-

tion to consider multiple potential runtime behaviors. Symphony uses this infrastructure

to fork execution at nondeterministic conditionals and to handle method calls where the

base pointer has multiple possible values. However, joining paths of execution required

significant extensions to the JPF implementation.

Java Path Finder forks execution upon registration of a choice generator, an object that

represents different possibilities a program could encounter during execution, e.g., dif-

ferent possible thread schedulings, user input values, etc. The choice generator author

must also instrument the program semantics to interpret these choices and guide the

program down the selected path, e.g., schedule the chosen thread for execution or push

the potential input value on the stack.To handle nondeterministic conditionals, Sym-

phony registers a choice generator which simply enumerates the possible conditional

values true and false, and instruments the conditional semantics to select either the goto

target or fallthrough successor based on the chosen value. To handle method calls with

multiple possible receivers, Symphony registers a choice generator which enumerates

over all possible receivers; the instrumented method call semantics used by Symphony

then calls the resolved method on the chosen receiver object.

Although we can use choice generators to fork execution, joining two paths of ex-

ecution is not possible in stock JPF. This deficiency does not impact soundness, only

termination. Without joining, JPF can quickly encounter the exponential path explosion

common in symbolic executors or diverge in the presence of unbounded loops. We have

therefore extended JPF to merge forked paths of execution that reach common program

points, which we call join points. In the presence of continue, break, and return statements,

finding these join points is nontrivial; we provide a complete overview of the algorithm

in Section 7.4. At a high level, when execution reaches a join point, Symphony creates a

snapshot and pauses execution. When another path of execution reaches the same join

179

point, JPF joins that path’s state with the currently waiting snapshot. This join operation

is itself defined in terms of join operations we have implemented over snapshots of the

heap, thread state, etc. After joining, Symphony continues execution from this newly

created snapshot, using the existing JPF resume execution functionality. Finally, to han-

dle a method call with multiple possible receivers, we join the paths spawned for each

callee at the control-flow successor of the method call.1

7.3.3 Loop Approximation

As explained in Chapter 6 (in particular, Sections 6.7 and 6.8.3), framework implemen-

tations may contain statically unbounded loops, and without an ACC property for the

semantic domain, the mostly-concrete interpreter may fail to terminate when executing

such loops. Thus, Symphony detects potentially statically unbounded loops and applies

a widening operation. This widening operation is an almost direct translation from the

one used in Concerto, modified to operate over JPF’s snapshot representation. Sym-

phony widens snapshots that reach the heads of an unbounded loops.2 When we detect

that the state at the loop header has stabilized across iterations, we prune any further

executions of the loop that return the header, continuing execution only on paths that

exit the loop.

7.4 Scheduling Execution

As mentioned above, joining multiple paths spawned at nondeterministic conditionals is

a surprisingly subtle problem. In a high-level language with source-level conditional and

loop expressions, the problem is (relatively) straightforward. However, JPF operates over

1In principle, we could have used a similar strategy to handle heap read/writes with multiple possible
base objects. However, each choice generator creates a snapshot of the entire execution state which is
relatively expensive to construct.
2The test for unboundedness is dynamic, in that we first assume every execution of a loop is bounded

until we detect that the loop may cause our interpreter to diverge. Thus, an execution of a loop may be
judged to be unbounded in one state, and bounded in another.

180

1 lbl: {

2 if(?) {

3 // ...

4 if(e) {

5 break lbl;

6 }

7 // ...

8 } else {

9 // ...

10 }

11 print("hello"); // point a

12 }

13 print("world"); // point b

Figure 7.1: Contrived example illustrating multiple join points. The two threads of

execution spawned at line 2 may join at point a or point b depending on whether e

evaluates to true or false.

181

Java bytecode which only supports conditional/unconditional gotos for control-flow,

significantly complicating the task. This section provides a formal problem definition,

our proposed solution, and a sketches a proof of correctness for our technique.

7.4.1 Motivation and Problem Definition

When JPF reaches a nondeterministic conditional, it forks execution and continues execu-

tion down both the true and false branches. This exploration does not happen in parallel:

JPF uses a search strategy to select which path of execution it will explore. For example,

the depth-first search strategy included with JPF will fully explore all execution paths

starting from the true branch, backtrack, and then fully explore paths spawned from the

false branch. Unfortunately, neither this strategy nor any other implemented in JPF can

join paths of execution. In the simple case, a merging strategy must execute one branch

until it reaches a join point j, pause execution, backtrack, and then execute the other

branch until it also reaches the join point j. Once both executions have reached the same

join point, JPF may join their states and resume execution.

However, as will soon be apparent, it is not statically apparent where exactly the join

point for a nondeterministic conditional will be. Consider the contrived example shown

in Figure 7.1. The conditional on line 2 is nondeterministic (as indicated by the ?). The

conditional line 4 is deterministic, and its true branch contains a labeled break statement

which transfers control flow out of the block labeled lbl. Thus, the two paths of execution

may meet at one of two points: point a if the conditional e on line 4 evaluates to false, or

point b if it evaluates to true. Thus, we must consider sets of potential join points when

merging execution.

Simply computing sets of join points is necessary but not sufficient. Let us return to

our example in Figure 7.1. Suppose after forking execution JPF chooses to explore the

false branch; after executing the else block it reaches point a, which has been identified

as a join point. As described above, JPF will suspend execution, backtrack and begin ex-

182

ecuting the true branch. Suppose now that when execution reaches line 4 the expression

e evaluates to true and control-flow exits the labeled block, reaching point b. As point b

is a control-flow join point, JPF will again pause execution. However, both sides of the

conditional have been explored, so both paths of execution are now stuck! As an exe-

cution starting from a can reach b (but not vice versa) we must resume execution at a,

eventually joining with b. As this example illustrates, our algorithm must also calculate

dependency information between join points. Our approach uses this dependency infor-

mation to resume an execution waiting at point j when there are no other outstanding

executions that may reach j.

This section describes algorithms for computing the control-flow join points, the

dependency information between them, and how to consume this information when

scheduling execution. In the following, we will say a thread of execution to refer to some

JPF VM state with a program counter, concrete heap, stack, etc. A thread may be sus-

pended (i.e., held in a worklist) or running (i.e., actively executing on the simulated JPF

VM). We will refer to a a thread waiting at point p to describe a suspended thread of ex-

ecution whose program counter is p. We say a path of execution π to describe a concrete

path taken by some thread of execution through a method’s control-flow graph. Due

to forking, multiple paths may originate from a thread t. Finally, we will often use the

name of a program point to refer to a thread of execution paused at that point (“e.g., join

with a”).

Before continuing, we outline two more properties that our algorithm should satisfy.

Our scheduling should be loop consistent, which intuitively requires that threads on dif-

ferent iterations of the same loop should never be joined. In other words, a thread t

executing the ith iteration of a loop should never be joined with another thread t ′ exe-

cuting the jth iteration of the same loop (where i 6= j). In fact, our algorithm guarantees

that all active executions within a loop must be on the same iteration. This property is

not a correctness condition, but ensures loops are handled uniformly. Formally, we as-

sociate with each thread of execution a vector of loop iteration counters I. Each position

183

1 i=0;

2 while (...) {

3 if(i == 1 || ?) {

4 // (a)

5 return ...;

6 } else {

7 // (b)

8 i = 1;

9 }

10 }

Figure 7.2: Example of loop consistency ruling out a join point. Joining the thread

of execution at b with a would require beginning another iteration of the loop, which

violates loop consistency.

in the vector corresponds to a loop in the executed method. A value of ι at a position

in I corresponding to a loop l indicates that the thread is not executing l. A value of

i ∈ N indicates that the thread is on the ith iteration. Reaching the loop header sets the

counter to 0; entering a loop either increments the loop counter, and exiting the loop

resets the counter ι (a fully formal definition is found in Appendix C). In a loop con-

sistent execution state, every thread’s loop vector has ι or the same value i at each loop

position. Requiring loop consistency may rule out some join opportunities. Consider

the code fragment in Figure 7.2. Suppose there are two threads of execution paused at

points a and b respectively; each thread is on the ith iteration Further, suppose that b

re-enters the loop when executed. If we resume the thread at b, after re-entering the loop

it will deterministically take the true branch and join with a. However, allowing b to

go around the loop and join with a would violate loop consistency. In fact, in the given

example, there is no point at which the threads a and b may rejoin without violating

loop consistency.

184

1 if(?) {

2 // ...

3 } else {

4 // ...

5 }

6 int x = expensive (); // point a

7 int y = 5; // point b

Figure 7.3: Example of multiple join points. It the paths spawned at the non-

deterministic conditional are joined at point a, then expensive() will be executed only

once. If the paths are joined at point b, expensive() will be executed twice, increasing

analysis time.

Second, as a performance consideration, we would like our control-flow joins to be

early optimal. Intuitively, an early optimal join is when two paths of execution are joined

at the earliest possible point. For example, consider the code in Figure 7.3. After forking

at the conditionals, the earliest the two paths of execution merge is at point a. It is tech-

nically correct to identify point b as the merge point, but doing so will cause expensive()

to be executed twice, potentially increasing analysis time.

7.4.2 Preliminaries

We now describe how we compute information used by the rest of our approach. For

the remainder of this section, we will assume an exception free control-flow graph for

a specific method, with successor and predecessor relations succ and pred respectively.

We do not need to join paths across method boundaries; all threads are joined at method

return before control is transferred back to the caller. In the following, we will refer to

abstract “points” in the control-flow graph, leaving ambiguous whether we are referring

to join basic blocks or bytecode instructions. It turns out not to matter which we mean,

185

although our algorithm is ultimately implemented in terms of basic blocks.

Identifying Loops To find the loops in a method we use the standard natural loop

detection algorithm [4]. We compute the dominators in the control flow graph. If a basic

block b has a successor s such that s dominates b, b is in a loop with s as a header. We

will write doms(s,b) to denote that s dominates b. We say that the CFG edge from b to

s is a back jump. We compute the loop body by traversing the predecessor edges of the

CFG from b until we reach the header s. For simplicity, we assume a loop has a single

entry point. We could relax this restriction by using the technique described in [139]. We

further assume that any cycles in the control-flow graph are the result of well-nested,

natural loops.

Our definitions will use the following formal definitions. In the following R+ de-

notes the (non-reflexive) transitive closure of relation R and R∗ is the reflexive, transitive

closure:

L(h) = {p | p ∈ pred∗−h(n)∧ succ(n,h)∧ doms(h,n)} (7.1)

H(b) = {p | b ∈ L(p)} (7.2)

pred−h = pred \ {(q,h)} (7.3)

L(h) is the set of statements/blocks in the body of the loop with header h, and H(b)

is the set of headers of loops that contain b. Note that L(b) = ∅ if b is not a loop header.

Finding Join Points We do not maintain a per-conditional list of join points, but rather

a set of all join points in the entire method. Identifying join points is relatively straight-

forward: we simply find all points with 2 or more predecessors. Note that this definition

necessarily includes all loop headers in a method.

186

7.4.3 Identifying Dependencies

After we have identified the join points of the method, we compute the dependencies

between them. We say a join point p depends on q iff a path of execution at q may reach

p without violating loop consistency. Recall that our goal is to avoid executing the same

code within different threads of execution. If we scheduled p while other threads could

still reach p then we would potentially re-execute the same code. Thus, we will execute

a thread paused at p only if there are no threads paused at p’s dependencies.

We compute the dependents of a join point as follows. Define acyclic successors as:

succ↓ = {(n,m) | (n,m) ∈ succ∧¬doms(m,n)}

For any point p, succ+↓ (p) is the set of points reachable from p without following a

backjump, i.e., without looping. Notice that succ↓ is acyclic (if it was not, we would have a

loop in the control-flow graph not involved in a natural loop, violating our assumption).

Define the immediate dependents of p as:

D(p) =
(
succ+↓ (p)∪H(p)

)
\ L(p)

The full dependents are D+(p). The immediate dependents of a point are those acycli-

cally reachable from p (excluding the loop body of p, if any) and the loop headers of

the containing loops of p. Intuitively, if p can reach q acyclically, then q should wait

for p (the succ+↓ term). Further, executions waiting at the head of a loop must wait for

any executions within the body of loop; that is, any completed iterations of a loop must

wait for other in-progress iterations (the H(p) term). Note that D is acyclic. To see why,

consider that the base relation succ↓ is acyclic. The only additional edge added is from

a point b within a loop to its headers (H(b)). However, we remove any edges from any

loop headers to their bodies (the subtraction of L(p)) ensuring no cycle is created.

187

7.4.4 Scheduling Executions

Given dependent information, scheduling executions is relatively straightforward. At

each scheduling point, JPF selects a thread of execution t paused at a join point p with

no active dependencies: i.e., there are no threads of execution paused at a point q such

that p ∈ D+(q). As D is acyclic, a least one paused thread must satisfy this requirement.

JPF then resumes execution from t pausing when t (or any threads forked from t) reach

any join point. After all threads have paused the above process is repeated, selecting an

unblocked thread and resuming execution. This process repeats until all threads have

returned from the method.3

7.4.5 Correctness

We have an preliminary proof of correctness for the above approach. We have proved that

D+(p) contains all of the join points reachable from p that are eligible as loop consistent

join points. In other words, the points excluded from D+(p) cannot be loop consistent,

early optimal join points for p. We have also proved that any scheduling admitted by

the above approach will be loop consistent. These proofs are found in Appendix C.

7.5 Future Challenges and Potential Solutions

As described in the previous two sections, significant progress has been made support-

ing mostly-concrete semantics in Symphony. We now describe the work remaining to

achieve feature parity with Concerto (Section 7.5.1), and the expected challenges we

expect to face scaling Symphony to the entire JVM (Section 7.5.2).

3As mentioned in Section 7.3.3, some loops may not terminate without widening. In practice our
scheduling algorithm integrates with the machinery described in Section 7.3.3 to widen states at the
headers of divergent loops.

188

7.5.1 Concerto Feature Parity

There are three key features of Concerto yet to be implemented in Symphony: yielding

into an abstract interpreter, yielding from an abstract interpreter into a concrete inter-

preter, and embedding abstract values into the mostly-concrete interpreter. The final

feature, embedding abstract values, is relatively simple to implement using the same at-

tribute API used to support multi-values and nondeterminism described in Section 7.3.1.

Similarly, we can embed the abstract heap into the mostly-concrete state by attaching a

reference to the abstract heap as an attribute to a dummy object allocated in the concrete

heap.4 We therefore focus on how we plan to support the first two features: yielding

from the abstract interpreter into the concrete interpreter, and vice versa.

We first describe how we plan to implement calls from the abstract interpreter. Our

instrumented method invocation semantics can detect when the receiver is an embedded

abstract value using the attribute value API discussed above. As in Concerto, Sym-

phony will invoke a method exposed by the abstract interpreter, passing in the abstract

receiver, method signature, method arguments (with any embedded abstract arguments

unwrapped), and information about the caller execution state. Symphony will also pass

in the abstract heap (extracted from the dummy object described above), a concrete heap

snapshot, and a snapshot of JPF execution state (including stack and thread snapshots)

for resuming concrete execution when the abstract interpreter finishes analyzing the

callee.

Yielding from the abstract interpreter into the concrete interpreter is also greatly sim-

plified by existing JPF infrastructure. JPF supports “direct call frames” which represent

call frames pushed by a method call in “native”5 code. When the abstract interpreter

encounters a method call with a concrete receiver, it will call a method provided by Sym-

phony, passing in the method name, receiver, arguments, caller state, etc. Symphony

4We assume, as in Concerto, that the abstract heap implementations are copy-on-write or immutable.
We can relax this assumption by requiring abstract heaps support a “clone” operation.
5Recall that native method implementations in JPF are written in Java.

189

will extract the abstract and concrete heaps, construct a fresh thread state with an empty

stack, push a direct call frame onto the stack, and then begin concrete execution. After

the concrete execution returns, Symphony will dispose of the thread state, and return

the updated concrete/abstract heap and return value to the abstract interpreter.

7.5.2 Challenges and Proposed Solutions

We now describe the key challenges we expect to encounter during the implementation

of Symphony. We expect that some of the missing features described in Section 7.1, such

as strings, subclassing, and exceptions, will be relatively straightforward to implement.

For example, we can support exceptions by extending the API used to communicate

return values between interpreters to include a list of exception type/object reference

pairs for each exception that may escape a called method.6 We therefore focus on what

we view as the most challenging questions:

1. How do we scalably and concisely represent method summaries?

2. How do we use existing native method implementations that manipulate a mostly-

concrete/abstract heap?

We now elaborate on these questions, and our proposed solutions.

Scalable Method Summaries

Caching method summaries is crucial to static analysis performance [7]. One of the

simplest caching strategies used in most abstract interpreters is simple input/output

caching. Input/output caching records the abstract state s ′ for a method m analyzed

in an initial state s under context C. If the analysis ever encounters a call to m under

context C with initial state s ′′ v s, then analysis of m can be skipped and the previously

6We expect this approach will use the combined object reference representation used for interface types
described in Section 6.8.4.

190

cached result of s ′ used instead. However, if the initial state s contains a concrete heap

component (as is the case with Symphony and Concerto), then even a single bit change

anywhere in the heap will trigger a potentially expensive reanalysis of a method. Further,

even checking that an initial state is subsumed by a previously encountered input state

requires walking the entire concrete heap, itself a very expensive operation.

We propose a solution based on read field sets, which records for each method m the

set of object/field pairs read by the method. When checking for input state subsumption,

only the object/field pairs read by the method need to be checked. We expect that the

majority of methods only access a small portion of the object graph (namely the objects

transitively reachable from the input parameters), therefore in the common case checking

for input state subsumption will be relatively efficient compared to the naı̈ve approach.

However, a simple input/output caching strategy with read fields will be unsound.

To see why, consider a method m that reads a single object field f. Suppose this method

has been invoked in a heap where f = 1 and the value of some field unrelated to the

method is 2. As g is untouched by m, our cached output state contains a heap where

g = 2. Finally, suppose we encounter a call to m in a state where f = 1 but g = 3. Our

naı̈ve read set based strategy would compare the values of f, and then use the cached

method result. However, this cached result has the incorrect value for g: the 3 in the

caller state has been mysteriously replaced with 2.

We therefore extend the above technique with write sets. During method execution,

we can instrument JPF to record all values written to object fields. This information can

be cached with the input/output summary. If the read field values in some caller’s

state are subsumed by a previous execution, then the caller’s heap can be updated in

place with the cached write information. These summaries must also account for object

allocations that occur during execution, but these can be overapproximated using the

summary objects described in Section 7.3.1.

An even more efficient form of method summaries are symbolic summaries, which

compactly represent the behavior of a method as a function over input data. Symbolic

191

summaries can yield significant speedup but are significantly more challenging to imple-

ment compared to simple input/output caching for heap-manipulating methods. One

simple (albeit imprecise) symbolic summary based on the write sets described above is

to simply havoc all object fields written during method execution. This summary may be

used instead of executing potentially expensive methods in the framework. For example,

Symphony could collect run time statistics for framework methods and use this impre-

cise summary for methods with relatively small write sets but long execution times. An

additional benefit of such imprecise summaries is that their representation is relatively

simple and compact, and can be soundly and concisely reused within a symbolic sum-

mary of application code that calls into framework code.

Native Method Stubs

JPF includes implementations for the native methods relied upon by the JCL. These im-

plementations are written in Java and, like their native VM counterparts, directly mutate

object fields, thread state, and other VM internals. Unfortunately, these implementations

only handle fully concrete heaps/objects/etc. For example, the JPF implementation of

System.arraycopy only copies the concrete array contents from the input array. Using this

implementation in conjunction with abstract values will be unsound, as it fails to copy

any symbolic values attached as attributes to the source array. Similarly, the implementa-

tion of the reflective Field.set operation unconditionally strongly updates an object field,

which would be unsound if the referenced object is a summary object.

We now sketch possible solutions for handling native methods that read or write

values in the heap. These solutions have different soundness/precision trade-offs. The

simplest is to manually extend the APIs used by the native method implementations

to record the object/fields updated during native method execution. After the native

method finishes, Symphony could (pessimistically) havoc these updated fields. This

approach is relatively simple to implement, while retaining soundness at the cost of

192

some precision. At the other end of the soundness/precision spectrum, we could on-

the-fly optimistically generate a concrete value consistent with any symbolic values read

by the native method stub. For example, if a native method reads an object field with

three possible values, Symphony could instrument the field read API used by the native

method to nondeterministically select one of the values. This approach is also very

simple to implement, but could undermine the soundness of Symphony, depending

on the frequency that native methods access symbolic values. Finally, as the native

method implementations are written in Java (and thus compiled to Java bytecode), they

are amenable to bytecode instrumentation that adds shadow state which transparently

tracks any symbolic information (i.e., embedded abstract values, multi values) about

program values accessed by the native method implementations. This approach can

preserve soundness and precision at the cost of significant implementation complexity

and performance overhead. Recent techniques developed by CROCHET have shown

how to add and remove instrumentation during program execution which can mitigate

any performance impacts.

The above solutions only handle native methods that unconditionally read or write

values. A native method may make control-flow decisions based on values read from

the heap or parameters. For example, consider again the Field.set method. The specifi-

cation requires that the implementation throw an exception if the first argument, i.e., the

object whose field value should be updated, is null. Further, multi-value references are

attached to the sentinel dummy value null. Thus, if Field.set is called with a multi-value

argument, the native method implementation will observe the dummy null value of the

argument leading to an incorrectly thrown exception.

One potentially precise and sound approach that addresses the above problem is to

concretely execute the native method with all possible valuations of multi-value argu-

ments and join the results. Returning to our Field.set example, suppose we reach a call

with arguments 〈{`1, `2}, {1, 2}〉, where `1 and `2 are concrete addresses. We could then

concretely execute the field update with all the arguments in {〈l, i〉|l ∈ {`1, `2} ∧ i ∈ {1, 2}}.

193

In the simplest case, this approach requires Πi|vi| executions for an invocation of a na-

tive method with arguments 〈v1, . . . , vn〉, where |vi| is the number of possible values for

argument vi. There are two major drawbacks with this approach, First, a native method

may read the value fields with multiple possible values during execution. It is impos-

sible to fork execution within the native method implementation. Instead, Symphony

must abort execution of the native procedure and fork execution before the native call,

cycling through all possible values of the read field. Second, for many abstract values

it is be impossible enumerate all represented concrete values. Symphony may have to

abort when an abstract value is read and fall back on less precise approaches described

above. This approach is relatively simple to implement with precision and soundness

benefits for certain calling patterns. However, it could potentially require executing a

native method implementation multiple times for each source program invocation and

may not be universally applicable for all native method invocations.

7.6 Conclusion

The Concerto project demonstrated that abstract interpretation can be applied to appli-

cations written against difficult-to-analyze framework code. For the results of Concerto

to be practically useful, significant work must be done to support the full complexity of

the Java language and JVM. This chapter outlined the progress we have made on the

Symphony project, which has reimplemented significant portions of the mostly-concrete

semantics of Concerto within JPF. It also contained a description of a novel analysis

scheduling strategy used within Symphony. We sketched our implementation strategy

for the remaining Concerto features needed by Symphony, and identified two key re-

search challenges that must be solved to bring combined interpretation to the full Java

language: scalable method summaries and native method execution with symbolic val-

ues. We have sketched multiple possible solutions to these challenges, although the

ultimate solutions will depend on the prevalence and impact of these challenges.

194

Chapter 8

RELATED WORK IN WHOLE-PROGRAM STATIC ANALYSIS

Frameworks As described in Chapter 5, other researchers have tackled the challenge

of analyzing framework based applications. In particular, the popular Android mobile

application framework has received particular attention given the ubiquity of the plat-

form. Many techniques use model (sometimes called “harness”) generation, i.e., the

generation of dummy main methods that summarize the behavior of the framework

[8, 132, 79]. The model generation approach has been applied to other frameworks. For

example, Livshits and Lam analyzed the securibench suite [125] by generating “invo-

cation stubs” [129]. Legato also uses model generation as described in Chapter 5. In

principle, harness generation simplifies analysis of framework-based applications by cre-

ating an easy-to-analyze program which can be understood by any off-the-shelf analysis.

In practice, a sound harness alone is insufficient to precisely analyze framework-based

applications. As described in Section 5.2.3, frameworks provide functionality beyond

a main event or dispatch loop, such as session and state management, indirect flow,

etc. Precisely handling these features requires manual modeling or complete and pre-

cise framework specifications. In fact, as noted in [23], a large part of the FlowDroid

project was the development of the taint wrappers which summarize the flow of infor-

mation through frameworks and libraries. Unfortunately, the effort of creating a model

generator and precise method summaries is not a one-time cost: changes to framework

adding or changing functionality require corresponding changes to model generators

and summaries.

In place of harness generation, other analyses have opted to embed models of frame-

work behavior into the analysis itself [190]. Another approach developed in the Droidel

195

project [23] avoided models entirely, instead focusing on explicating framework behav-

ior. Specifically, the authors manually replaced instances of difficult-to-analyze features

(e.g. reflective allocations, native code methods) in the framework with invocations to

special Droidel stub methods. Based on an application’s configuration file, the Droidel

tool generates implementations for these stubs that soundly summarize the replaced

feature for the application. For example, reflective allocations of an Android Activity

object are replaced with calls to a generated stub method that instantiates Activity ob-

jects registered in the application’s configuration file. Unfortunately, this proposed ap-

proach still requires manual changes whenever the framework is changed. Further, as

Droidel explicitly focuses on explicating only Android’s use of reflection and native code

([23, Section 3.1]) it does not enable the precise analysis of the framework features cited

above. For example, Droidel models one of Android’s implicit flow features by generat-

ing a large switch statement. Precisely resolving indirect flows using this model would

thus require context-sensitive constant propagation with static resolution of switch state-

ments. In other words, the client analysis must compensate for an imprecise model with

significant analysis machinery.1

The Frameworks for Frameworks (F4F) system by Sridharan et al. [174] generalizes

these efforts, providing a framework for writing framework models in a DSL called

WAFL. These models specify, e.g., how to replace calls to framework APIs with simpler,

equivalent code. In practice, these DSL models are generated based off an application’s

configuration file as in harness generation. Thus, using F4F to model a new framework

ultimately requires producing a generator after becoming an expert in the framework

functionality. Further, it is unlikely that the model generators created for one framework

can be meaningfully reused within another framework. Although F4F can reduce the time

to develop a framework model generator (to reportedly as low as 1 week per framework),

modeling frameworks remains a non-trivial time investment that must be paid to support

1The authors note that Droidel can complement existing modeling techniques, which implies Droidel
is a partial solution for analysis of framework-based applications.

196

any new frameworks.

Although the above techniques have different trade-offs, they all fundamentally rely

on some form of manual modeling and framework expertise. In contrast, once the con-

crete semantics for a language are specified, combined interpretation can in principle

be used with any framework without further effort. In practice, both Symphony and

Concerto rely on oracles to determine: 1. which I/O operations are nondeterministic,

and 2. which classes belong to the framework vs. application. In the former case, we

can develop a single oracle for all I/O primitives included in the Java Class Library.

This oracle could be configured to consider specific files/folders/hostnames as deter-

ministic sources, treating all other sources as nondeterministic. Although providing this

configuration is some manual effort, it is significantly less work than creating an ex-

haustive model of framework behavior. Similarly, we can develop a single oracle which

is configured with the sets of framework and application jars; classes loaded from an

application jar are considered application types, and vice-versa for classes loaded from

framework jars. This configuration is a relatively small piece of manual effort, and we

expect that developers can easily identify which JAR files comprise the framework vs.

the application.

Reflection Concerto and Symphony aim to precisely analyze framework implementa-

tions, which often entails precisely resolving reflective operations. Several static analyses

have been developed to exclusively resolve reflection. For example, [119, 171] collect type

constraints on reflective operations to narrow the space of possible callees/instantiated

objects. For example, if the result of a reflective instantiation is downcast to type I, then

these analyses constrain the reflective instantiation to only construct classes that subtype

I. Both analyses cited above also track constant strings that flow to the Java reflective

API to further refine the resolution of reflective calls. Work by Barros et al. [15] have

used the Checker framework [64, 150] to exploit static string information to resolve re-

flective invocations. However, all of these techniques rely on reflection APIs being used

197

in stylized ways. These patterns, particularly the use of constant strings, rarely occur in

framework implementations. In addition, these techniques are tailored to specific APIs

(i.e., Java’s reflection API) and adapting them to other domains requires non-trivial work

by the analysis designer.

Combined Analyses Many efforts have combined dynamic and static analysis, yield-

ing “blended” or “hybrid” analyses. Some hybrid analyses use information recorded

during dynamic executions of the program to improve the static-analysis precision [88,

68, 199, 56, 162]. For example, TamiFlex by Bodden et al. [26] instruments an applica-

tion to record the callees of reflective calls as it runs a representative workload. These

approaches generally suffer from unsoundness; even representative workloads rarely ex-

ercise all possible execution paths. Symmetrically, other researchers have run a dynamic

analysis seeded with information produced by a static analysis [14, 113, 44]. As with the

above approaches, any dynamic analysis will almost certainly be unsound.

Other researchers have explored other approaches to combining analyses. For ex-

ample, [74] runs a series of increasingly precise analyses to prune false positives left

by earlier analyses. Work on tunable analyses of JavaScript [108] uses the results of a

pre-analysis to restrict the abstract states explored by an abstract interpretation. Ferrara

et al. [73] explored combining a value and heap analysis to improve precision in ab-

stract interpretation. Their approach embeds information produced by the heap analysis

into the domain of the value analysis. This embedding closely mirrors how Concerto

embeds abstract values into the mostly-concrete state and vice versa.

Other researchers have combined different execution strategies for different portions

of code [12, 43]. For example, Chipounov et al. [43] switch to fully concrete execution on

portions of the system under test. Their approach requires concretizing symbolic values

and then checking that no feasible paths are pruned as a result. Concretization is per-

formed lazily, which parallels how Concerto threads abstract values through mostly-

concrete interpretation. However, due to the state separation hypothesis, Concerto can

198

avoid almost all concretization. Godefroid et al. [87] have developed the SMASH algo-

rithm which exploits an insight similar to that behind Concerto to effectively interleave

may- and must-analyses. Specifically, they note must-analyses (i.e., directed concrete

execution) can easily reason about code that would confound a may analysis, and simi-

larly may analyses can easily prove properties about code that confounds must-analysis.

Their verification technique composes may and must summaries to gain precision and

performance improvements over using a single technique. This interleaving of concrete

and symbolic reasoning has clear parallels to our interleaving of mostly-concrete and

abstract interpretation on different portions of a system.

Finally, many researchers have improved analysis precision by combining abstract

domains [130, 116, 72, 187, 31, 54, 70, 206], via the reduced product [49], reduced ten-

sor product [148], etc. Astree [53] in particular is an industry tool that computes an

approximate reduced product by propagating information through a tree of abstract do-

mains [54]. Our approach in Concerto could be formalized as a degenerate case of

this framework, where the exchange of information between the abstract and mostly-

concrete interpreters takes place at the transition points via the communication channels

described in [54]. However, while the reduced product domain found in Astree and

other abstract interpretations typically exchange information about the same program

point between multiple domains, under Concerto each program statement is analyzed

by either mostly-concrete or abstract interpretation. Further, our subfixpoint iteration

strategy is significantly different from the one described in [54].

Concolic Testing Our combined interpretation bears similarity to concolic testing [167,

86, 168]. Concolic testing performs symbolic and concrete execution in parallel, but falls

back on concrete values in the symbolic interpreter when it encounters an expression

outside of the logic of the underlying theorem prover. This approach is similar to how

Concerto uses concrete execution to precisely reason about difficult-to-analyze code.

Similarly, as noted in Section 6.2, our technique is similar to partial evaluation [82, 140].

199

However, partial evaluation is typically used for optimization [32, 98], and the full reso-

lution of reflection is usually an orthogonal concern. We are unaware of work trying to

use partial evaluation to handle difficult-to-analyze framework code for sound program

analysis, and we believe Concerto is less brittle than a partial evaluation approach to

this problem.

Handling Native Code As described in Section 7.5.2, one of the major challenges

in completing our work on Symphony is the handling of native methods. Many re-

searchers have studied the problem of native code, particularly Java’s native interface

(JNI) [81, 80, 117, 109]. These efforts have primarily focused on finding errors in JNI

code, e.g., failure to check error values or accessing nonexistent fields. Although the

types inferred by [81] can help describe the fields accessed or methods called by a native

method implementation, these techniques do not in general describe the behavior of JNI

methods.

In [179], Tan and Morrisett present ILEA, a specification generator for JNI methods

that targets a variant of the JVML language [78], a formal model of Java bytecode. Their

approach is appealing as JVML can be trivially transformed into Java bytecode which

could then be interpreted by JPF without any further modifications. Unfortunately, to

soundly account for imprecision during model generation, their tool emits special opera-

tions which respectively encode nondeterministic selection of a value of type T , mutating

an arbitrary object, and havocing the heap. Although JPF could be extended to support

these operations, doing so would be either very expensive (the former two) or extremely

imprecise (the latter operation).

Another drawback of ILEA is that some JNI operations are expressed in terms of

other JNI operations, so ILEA is not a standalone solution for modeling all native meth-

ods. For example, JNI operations on object fields are implemented using the Java Reflec-

tion API, which itself depends on native operations. Further, the specifications created

by ILEA can soundly capture the high-level heap effects of a native method, but may

200

miss low-level behavior critical to precision. For example, ILEA specification genera-

tion will ignore any operations that do not affect the JVM heap, including low-level I/O

operations. For example, ILEA treats C’s standard I/O facilities as exclusively produc-

ing nondeterministic values. As a result, specifications for the native implementations

of Java’s I/O APIs will themselves produce nondeterministic values. However, such

specifications will be unacceptably imprecise for use in Symphony and Concerto; both

projects rely on concretely reading the contents of configuration files. ILEA is thus not

a complete replacement for the implementations included in JPF, but can be used for

handling native methods that do not have JPF implementations.

Caching and Summary Computation Many abstract interpreters we have reviewed

either do not fully report their their summary/caching strategies [71] or use (some vari-

ation on) the naı̈ve strategy described in Section 7.5.2 [104, 57]. We are unaware of any

optimizations from the abstract interpretation literature that can be directly applied to

the issue of method summaries involving large concrete states. However, methods to

detect redundant states developed in the random testing and symbolic execution com-

munities may be usable in the context of Symphony [200, 194, 115]. We can potentially

use these papers’ techniques for detecting similarity between heap structures as a pre-

filter to determine if a state is definitely unvisited. That is, if a state has an unseen

heap shape, then it must be unvisited and more expensive value-by-value subsumption

checking can be skipped.

One possible optimization discussed in Section 7.5.2 was the generation of symbolic

summaries for framework code. Several researchers have investigated generating sum-

maries of method behavior. Reps et al. have shown how to efficiently compute sym-

bolic summaries in data-flow reachability problems [163]. The IDE framework used by

Legato [166] (which generalizes the work in [163]) can generate summary functions for

analyses over environments (see Section 3.3.1). However, both frameworks in [163, 166]

require distributive transformers, which means they cannot fully summarize the effects

201

of mostly-concrete interpretation. Other researchers have developed techniques to gen-

erate symbolic summaries of a method’s effect on the heap [66, 7]. Like the work in

[163], these techniques can only describe the movement of values through the heap, not

their transformation. However, Symphony could use these summaries for framework

methods that do not manipulate or interrogate such as setters or getters.

202

Chapter 9

CONCLUSION AND FUTURE WORK

In this dissertation I presented three major research efforts which use program anal-

yses to improve the quality of highly-configurable software. The work on Staccato and

Legato used static and dynamic analysis techniques to find defects in dynamic configu-

ration updates. This work substantiated my first sub-thesis, which claims that defects in

programs support for configuration changes at runtime can be detected with static and

dynamic techniques. The work on Concerto used the rigorous theory of abstract inter-

pretation to combine (mostly-)concrete execution and an abstract interpreter to precisely

analyze applications built upon highly configurable, difficult-to-analyze frameworks. To-

gether, the formal development and empirical evaluation of Concerto substantiated my

second sub-thesis, which stated that the performance and precision of static analyses

over framework-based application can be improved with the principled combination

of abstract and concrete interpretation that exploits static configuration information.

In this chapter, I briefly review the techniques developed during this research and then

outline future work.

9.1 Techniques

This section highlights the key technical development for each research project presented

in this dissertation.

Configuration Histories Staccato is an information flow analysis which uses the

novel domain of configuration histories for its shadow state. Configuration histories

record both the options and which versions of those options were used to construct a

203

value. These configuration histories are automatically combined as their host values

are combined and transformed. Given a configuration history attached to an object,

it is relatively simple to determine whether the value satisfies one of the two correct-

ness conditions. Staccato gives high-level control over how configuration histories are

transformed and propagated via propagation annotations. These annotations can ex-

press that, e.g., an entire object is derived from the configuration information present

in its constructor arguments. Configuration histories are a general data structure for

recording the configuration options and versions; Staccato used them to record the op-

tions and versions observed during entire method executions as a heuristic for detecting

correctness violations involving control-flow.

Abstract Resource Versions An element of the ARV domain identifies a single, unique

invocation of a resource access. Intuitively, an ARV at point p in the program represents

an access at point q as a set of program flows leading from q to p. These flows are rep-

resented by strings of unique labels assigned to method call sites and resource accesses.

In order to disambiguate between different invocations of a method call or resource ac-

cess, ARVs add primes to these labels, where n primes on a label indicates the n+ 1th

most recent occurrence of that event, i.e., method call or resource access. ARVs can be

compactly represented using tries that naturally encode the set of traces that identify a

resource access. Although ARVs bear some similarities to the context strings used in

alias analyses, the structure and application of ARVs in Legato is, to the best of my

knowledge, unique.

Combined Execution Concerto analyzes framework code with mostly-concrete exe-

cution and the application code with an abstract interpreter. The mostly-concrete in-

terpreter is simply a concrete interpreter extended to support nondeterminism and em-

bedded abstract values. Using concrete execution to reason about programs is not new

(e.g., unit testing, directed random testing, dynamic analysis), but Concerto’s integra-

204

tion within a sound static analysis is, to the best of my knowledge, unique. In essence,

Concerto optimistically assumes framework code will be completely deterministic, but

automatically falls back on an imprecise answer when this assumption is violated, main-

taining soundness. In general, such an optimistic assumption would be frequently vi-

olated, but frameworks are often deterministic once given concrete configuration infor-

mation. Concerto exploits this configuration information to explore these deterministic

paths of execution with mostly-concrete interpretation. Further, as Concerto uses an

abstract interpretation on the application, this assumption does not need to hold for the

application, only the framework code.

9.2 Future Directions

This dissertation represents a first step in addressing many of the challenges described

in Chapter 1. This section sketches future research directions, focusing on addressing

the challenges identified in Chapter 5.

Automatic Sharing of Analysis Results I propose exploring techniques for automati-

cally sharing analysis results and facts across problem domains. Currently, results gen-

erated by one analysis generally cannot be used by another static analysis. Thus, every

analysis must begin inference about program behavior from scratch, which is expensive

for large programs. This lack of reuse is especially wasteful as analyses in different do-

mains may still generate information useful to each other. For example, an array bounds

analysis may compute information about points-to relations that could be reused in a

taint analysis to save analysis time. I plan to research how to: 1) automatically transform

static analyses to derive reusable facts about program behavior during analysis, and 2)

transform other analyses to consume these facts to bootstrap inference, saving valuable

developer time.

205

Automatic Synthesis of Weakened Analyses A common technique for static analy-

sis is to add precision “knobs” to an analysis [91, 104, 108]. These knobs allow the

analysis user to trade performance for precision. However, constructing these knobs re-

quires careful engineering on the part of the analysis designer and implementer. I plan

to research techniques to synthesize less precise (but more scalable) versions of existing

analyses. These weakened analyses may be used as fast preanalyses, or to handle large

library codebases. Existing work by Cousot et al. [55] has shown that abstract interpreta-

tion can be applied to abstract interpreters to automatically refine abstract domains and

widening operators. My proposed work can be viewed as a more dramatic application

of this general technique.

Sharing API Knowledge As described in Section 5.2.2, analyses rely on high-level,

semantic information about method or API behavior that must be manually codified by

the analysis developer. I envision developing a shared infrastructure and interchange

format for static analysis researchers to share this semantic information. Designing this

system and its format promises to reveal what information analysis authors use and how

even further sharing can be achieved between analyses and researchers.

Symphony Usability Concerto requires that the integrated abstract interpreter is

written against APIs that manage heap embedding, switching between the interpreta-

tion strategies, etc. These APIs enforce a relatively rigid structure on the abstract inter-

pretation implementation, and add nontrivial code overhead. One important research

direction is designing techniques for automatically transforming existing abstract inter-

preters to integrate Symphony with as little programmer intervention as possible. A

totally general transformation that integrates any abstract interpretation implementation

into Symphony is likely impossible. However, I plan to explore a lightweight system

of annotations or DSLs to enable the integration of a wide variety of existing abstract

interpreters with Symphony.

206

BIBLIOGRAPHY

[1] Java class library documentation v 11. https://docs.oracle.com/en/java/
javase/11/.

[2] Spring framework. http://spring.io/.

[3] T.J. Watson Libraries for Analysis (WALA). http://wala.sf.net/.

[4] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques and Tools (Second Edition). Addison Wesley, 2007.

[5] Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. Maximal specification synthesis.
In POPL, 2016.

[6] Steven Arzt and Eric Bodden. Reviser: efficiently updating ide-/ifds-based data-
flow analyses in response to incremental program changes. In ICSE, 2014.

[7] Steven Arzt and Eric Bodden. Stubdroid: automatic inference of precise data-flow
summaries for the android framework. In ICSE, 2016.

[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. In PLDI, 2014.

[9] Mona Attariyan, Michael Chow, and Jason Flinn. X-ray: Automating root-cause
diagnosis of performance anomalies in production software. In OSDI, 2012.

[10] Mona Attariyan and Jason Flinn. Using causality to diagnose configuration bugs.
In USENIX Annual Technical Conference, 2008.

[11] Mona Attariyan and Jason Flinn. Automating configuration troubleshooting with
dynamic information flow analysis. In OSDI, 2010.

[12] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. En-
hancing symbolic execution with veritesting. In ICSE, 2014.

https://docs.oracle.com/en/java/javase/11/
https://docs.oracle.com/en/java/javase/11/
http://spring.io/
http://wala.sf.net/

207

[13] Peter Bailis, Alan Fekete, Michael J Franklin, Ali Ghodsi, Joseph M Hellerstein, and
Ion Stoica. Coordination avoidance in database systems. Proceedings of the VLDB
Endowment, 8(3), 2014.

[14] Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. Saner: Composing static and dynamic
analysis to validate sanitization in web applications. In Symposium on Security and
Privacy, 2008.

[15] Paulo Barros, Suzanne Just, Renéand Millstein, Paul Vines, Werner Dietl, and
Michael D Ernst. Static analysis of implicit control flow: Resolving java reflec-
tion and android intents. In ASE, 2015.

[16] Osbert Bastani, Saswat Anand, and Alex Aiken. Specification inference using
context-free language reachability. In POPL, 2015.

[17] Jonathan Bell and Gail Kaiser. Phosphor: illuminating dynamic data flow in com-
modity JVMs. In OOPSLA, 2014.

[18] Jonathan Bell and Luı́s Pina. Crochet: Checkpoint and rollback via lightweight
heap traversal on stock jvms. In ECOOP, 2018.

[19] Tom Bergan, Dan Grossman, and Luis Ceze. Symbolic execution of multithreaded
programs from arbitrary program contexts. In OOPSLA, 2014.

[20] Arthur J Bernstein, Philip M Lewis, and Shiyong Lu. Semantic conditions for
correctness at different isolation levels. In Data Engineering, 2000.

[21] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency control
and recovery in database systems. Addison-Wesley Pub. Co. Inc., Reading, MA, 1987.

[22] Matt Bishop and Michael Dilger. Checking for race conditions in file accesses.
Computing systems, 2(2), 1996.

[23] Sam Blackshear, Alexandra Gendreau, and Bor-Yuh Evan Chang. Droidel: A gen-
eral approach to android framework modeling. In Proceedings of the 4th ACM SIG-
PLAN International Workshop on State Of the Art in Program Analysis, 2015.

[24] Sam Blackshear and Shuvendu K. Lahiri. Almost-correct specifications: A modular
semantic framework for assigning confidence to warnings. In PLDI, 2013.

208

[25] Eric Bodden. Inter-procedural data-flow analysis with ifds/ide and soot. In State
of the Art in Java Program analysis, 2012.

[26] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming
reflection: Aiding static analysis in the presence of reflection and custom class
loaders. In ICSE, 2011.

[27] François Bourdoncle. Efficient chaotic iteration strategies with widenings. In For-
mal Methods in Programming and their Applications, 1993.

[28] Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership types for
object encapsulation. In POPL, 2003.

[29] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the
future safe for the past: Adding genericity to the Javaprogramming language. In
OOPSLA.

[30] Guillaume Brat, Klaus Havelund, SeungJoon Park, and Willem Visser. Java
pathfinder-second generation of a java model checker. In Workshop on Advances
in Verification, 2000.

[31] Jörg Brauer, Thomas Noll, and Bastian Schlich. Interval analysis of microcontroller
code using abstract interpretation of hardware and software. In Workshop on Soft-
ware & Compilers for Embedded Systems, 2010.

[32] Matt Brown and Jens Palsberg. Jones-optimal partial evaluation by specialization-
safe normalization. Proc. ACM Program. Lang., 2(POPL):14, 2017.

[33] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. Bap: A
binary analysis platform. In CAV, 2011.

[34] Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan. Line-up: A
complete and automatic linearizability checker. In PLDI, 2010.

[35] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs. In
OSDI, 2008.

[36] Xiang Cai, Rucha Lale, Xincheng Zhang, and Robert Johnson. Fixing races for
good: Portable and reliable unix file-system race detection. In Information, Computer
and Communications Security, 2015.

209

[37] Cristiano Calcagno and Dino Distefano. Infer: an automatic program verifier for
memory safety of Cprograms. In NASA Formal Methods Symposium, 2011.

[38] Cristiano Calcagno, Dino Distefano, and Peter O’Hearn.
Open-sourcing facebook infer: Identify bugs before you
ship. https://code.facebook.com/posts/1648953042007882/
open-sourcing-facebook-infer-identify-bugs-before-you-ship/, 2015.

[39] David Callahan, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Interproce-
dural constant propagation. In Compiler Construction, 1986.

[40] Sagar Chaki, Edmund Clarke, Alex Groce, Joël Ouaknine, Ofer Strichman, and
Karen Yorav. Efficient verification of sequential and concurrent c programs. Formal
Methods in System Design, 25(2-3):129–166, 2004.

[41] Sagar Chaki, Edmund Clarke, Nicholas Kidd, Thomas Reps, and Tayssir Touili.
Verifying concurrent message-passing c programs with recursive calls. In TACAS,
2006.

[42] Shigeru Chiba. Javassist-a reflection-based programming wizard for Java. In OOP-
SLA Workshop on Reflective Programming in C++ and Java, 1998.

[43] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2e: A platform
for in-vivo multi-path analysis of software systems. In ASPLOS, 2011.

[44] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged information
flow for Javascript. In PLDI, 2009.

[45] James Clause, Wanchun Li, and Alessandro Orso. Dytan: a generic dynamic taint
analysis framework. In ISSTA, 2007.

[46] Patrick Cousot. Asynchronous iterative methods for solving a fixed point system
of monotone equations in a complete lattice. Res. rep. RR, 88, 1977.

[47] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
POPL, 1977.

[48] Patrick Cousot and Radhia Cousot. Constructive versions of tarski’s fixed point
theorems. Pacific journal of Mathematics, 82(1), 1979.

https://code.facebook.com/posts/1648953042007882/open-sourcing-facebook-infer-identify-bugs-before-you-ship/
https://code.facebook.com/posts/1648953042007882/open-sourcing-facebook-infer-identify-bugs-before-you-ship/

210

[49] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In POPL. ACM, 1979.

[50] Patrick Cousot and Radhia Cousot. Abstract interpretation and application to logic
programs. The Journal of Logic Programming, 13(2-3):103–179, 1992.

[51] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. Journal of
logic and computation, 2(4), 1992.

[52] Patrick Cousot and Radhia Cousot. Modular static program analysis. In Interna-
tional Conference on Compiler Construction, 2002.

[53] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival. The astrée analyzer. In ESOP, 2005.

[54] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival. Combination of abstractions in the astrée static
analyzer. In Annual Asian Computing Science Conference, 2006.

[55] Patrick Cousot, Roberto Giacobazzi, and Francesco Ranzato. A2i: abstract2 inter-
pretation. Proceedings of the ACM on Programming Languages, 3(POPL):42, 2019.

[56] Christoph Csallner, Yannis Smaragdakis, and Tao Xie. Dsd-crasher: A hybrid
analysis tool for bug finding. TOSEM, 17(2):8, 2008.

[57] David Darais, Nicholas Labich, Phúc C Nguyen, and David Van Horn. Abstracting
definitional interpreters (functional pearl). Proceedings of the ACM on Programming
Languages, 1(ICFP):12, 2017.

[58] Ankush Das, Shuvendu K. Lahiri, Akash Lal, and Yi Li. Angelic verification: Pre-
cise verification modulo unknowns. In CAV, 2015.

[59] Manuvir Das, Sorin Lerner, and Mark Seigle. Esp: Path-sensitive program verifi-
cation in polynomial time. In PLDI, 2002.

[60] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level
software. In PLDI, 2001.

[61] Robert DeLine and Manuel Fähndrich. Typestates for objects. In ECOOP, 2004.

[62] Dorothy E Denning. A lattice model of secure information flow. Communications of
the ACM, 19(5), 1976.

211

[63] Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting.
In PLDI, 1994.

[64] Werner Dietl, Stephanie Dietzel, Michael D Ernst, Kivanç Muşlu, and Todd W
Schiller. Building and using pluggable type-checkers. In ICSE, 2011.

[65] Isil Dillig, Thomas Dillig, and Alex Aiken. Precise reasoning for programs using
containers. In POPL, 2011.

[66] Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. Precise and compact
modular procedure summaries for heap manipulating programs. In PLDI, 2011.

[67] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. Tuning database con-
figuration parameters with iTuned. Proceedings of the VLDB Endowment, 2009.

[68] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. Blended analysis for perfor-
mance understanding of framework-based applications. In ISSTA, 2007.

[69] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun,
Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid:
an information-flow tracking system for realtime privacy monitoring on smart-
phones. TOCS, 32(2), 2014.

[70] Manuel Fähndrich and Francesco Logozzo. Static contract checking with abstract
interpretation. In Formal Verification of Object-Oriented Software, 2010.

[71] Manuel Fahndrich and Francesco Logozzo. Static contract checking with abstract
interpretation. Springer Verlag, October 2010.

[72] Pietro Ferrara. Static type analysis of pattern matching by abstract interpretation.
In Formal Techniques for Distributed Systems, pages 186–200. Springer, 2010.

[73] Pietro Ferrara. Generic combination of heap and value analyses in abstract inter-
pretation. In VMCAI, 2014.

[74] Stephen J Fink, Eran Yahav, Nurit Dor, G Ramalingam, and Emmanuel Geay. Ef-
fective typestate verification in the presence of aliasing. TOSEM, 17(2), 2008.

[75] Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi. Velodrome: A sound and
complete dynamic atomicity checker for multithreaded programs. In PLDI, 2008.

[76] Apache Foundation. Apache struts 2. https://struts.apache.org/.

https://struts.apache.org/

212

[77] Martin Fowler. Inversion of control containers and the dependency injection pat-
tern. 2004.

[78] Stephen N Freund and John C Mitchell. A type system for the java bytecode
language and verifier. Journal of Automated Reasoning, 30(3-4), 2003.

[79] Adam P. Fuchs, Avik Chaudhuri, and Jeffrey S. Foster. Scandroid: Automated
security certification of android. Technical Report CS-TR-4991, November 2009.

[80] Michael Furr and Jeffrey S. Foster. Checking type safety of foreign function calls.
In PLDI, 2005.

[81] Michael Furr and Jeffrey S Foster. Polymorphic type inference for the jni. In
European Symposium on Programming, pages 309–324. Springer, 2006.

[82] Yoshihiko Futamura. Partial evaluation of computation process–an approach to a
compiler-compiler. Higher-Order and Symbolic Computation, 12(4):381–391, 1999.

[83] Malay Ganai, Dongyoon Lee, and Aarti Gupta. Dtam: dynamic taint analysis of
multi-threaded programs for relevancy. In FSE, 2012.

[84] Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1), 1987.

[85] Patrice Godefroid, Peli de Halleux, Aditya V. Nori, Sriram K. Rajamani, Wolfram
Schulte, Nikolai Tillmann, and Michael Y. Levin. Automating software testing
using program analysis. IEEE software, 25(5), 2008.

[86] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated
random testing. In PLDI, 2005.

[87] Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and Sai Deep Tetali. Com-
positional may-must program analysis: Unleashing the power of alternation. In
POPL, 2010.

[88] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis.
Heaps don’t lie: Countering unsoundness with heap snapshots. Proc. ACM Pro-
gram. Lang., 1(OOPSLA), 2017.

[89] Sumit Gulwani and Ashish Tiwari. Computing procedure summaries for interpro-
cedural analysis. In ESOP, 2007.

213

[90] Vivek Haldar, Deepak Chandra, and Michael Franz. Dynamic taint propagation
for Java. In Computer Security Applications Conference, 2005.

[91] Ben Hardekopf, Ben Wiedermann, Berkeley Churchill, and Vineeth Kashyap.
Widening for control-flow. In International Conference on Verification, Model Checking,
and Abstract Interpretation, 2014.

[92] Christopher M Hayden, Karla Saur, Michael Hicks, and Jeffrey S Foster. A study
of dynamic software update quiescence for multithreaded programs. In Workshop
on Hot Topics in Software Upgrades, 2012.

[93] Christopher M. Hayden, Edward K. Smith, Michail Denchev, Michael Hicks, and
Jeffrey S. Foster. Kitsune: Efficient, general-purpose dynamic software updating
for C. In OOPSLA, 2012.

[94] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition
for concurrent objects. TOPLAS, 12(3), 1990.

[95] Daniel Jackson. Software abstractions: Logic. Language, and Analysis. MIT Press,
2012, 2006.

[96] Dongpu Jin, Myra B Cohen, Xiao Qu, and Brian Robinson. PrefFinder: getting the
right preference in configurable software systems. In ASE, 2014.

[97] Dongpu Jin, Xiao Qu, Myra B Cohen, and Brian Robinson. Configurations every-
where: Implications for testing and debugging in practice. In ICSE, 2014.

[98] Neil D Jones, Carsten K Gomard, and Peter Sestoft. Partial evaluation and automatic
program generation. Peter Sestoft, 1993.

[99] Neil D. Jones and Steven S. Muchnick. Flow analysis and optimization of lisp-like
structures. In POPL, 1979.

[100] Neil D Jones and Steven S Muchnick. Flow analysis and optimization of lisp-like
structures. In POPL, 1979.

[101] Matthias L. Jugel. Personal Communication, 2017.

[102] John B Kam and Jeffrey D Ullman. Monotone data flow analysis frameworks. Acta
Informatica, 7(3), 1977.

214

[103] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song.
Dta++: Dynamic taint analysis with targeted control-flow propagation. In NDSS,
2011.

[104] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons,
John Sarracino, Ben Wiedermann, and Ben Hardekopf. Jsai: a static analysis plat-
form for javascript. In FSE, 2014.

[105] Uday P Khedker, Amitabha Sanyal, and Amey Karkare. Heap reference analysis
using access graphs. TOPLAS, 30(1), 2007.

[106] Gary A Kildall. A unified approach to global program optimization. In POPL,
1973.

[107] Dave King, Boniface Hicks, Michael Hicks, and Trent Jaeger. Implicit flows: Cant
live with em, cant live without em. In Information Systems Security, 2008.

[108] Yoonseok Ko, Hongki Lee, Julian Dolby, and Sukyoung Ryu. Practically tunable
static analysis framework for large-scale javascript applications (t). In ASE, 2015.

[109] Goh Kondoh and Tamiya Onodera. Finding bugs in java native interface programs.
In ISSTA, 2008.

[110] Daniel Kroening, Daniel Poetzl, Peter Schrammel, and Björn Wachter. Sound static
deadlock analysis for c/pthreads. In ASE, 2016.

[111] Eugene Kuleshov. Using the ASMframework to implement common Javabytecode
transformation patterns. Aspect-Oriented Software Development, 2007.

[112] Sulekha Kulkarni, Ravi Mangal, Xin Zhang, and Mayur Naik. Accelerating pro-
gram analyses by cross-program training. In OOPSLA, 2016.

[113] Monica S. Lam, Michael Martin, Benjamin Livshits, and John Whaley. Securing
web applications with static and dynamic information flow tracking. In Partial
Evaluation and Semantics-based Program Manipulation, 2008.

[114] James R. Larus, Thomas Ball, Manuvir Das, Robert DeLine, Manuel Fahndrich, Jon
Pincus, Sriram K. Rajamani, and Ramanathan Venkatapathy. Righting software.
IEEE software, 21(3), 2004.

[115] Steven Lauterburg, Ahmed Sobeih, Darko Marinov, and Mahesh Viswanathan. In-
cremental state-space exploration for programs with dynamically allocated data.
In ICSE, 2008.

215

[116] Vincent Laviron and Francesco Logozzo. Subpolyhedra: A (more) scalable ap-
proach to infer linear inequalities. In VMCAI, 2009.

[117] Byeongcheol Lee, Ben Wiedermann, Martin Hirzel, Robert Grimm, and Kathryn S.
McKinley. Jinn: Synthesizing dynamic bug detectors for foreign language inter-
faces. In PLDI, 2010.

[118] Johannes Lerch, Johannes Späth, Eric Bodden, and Mira Mezini. Access-path ab-
straction: Scaling field-sensitive data-flow analysis with unbounded access paths.
In ASE, 2015.

[119] Yue Li, Tian Tan, and Jingling Xue. Effective soundness-guided reflection analysis.
In SAS, 2015.

[120] Max Lillack, Christian Kästner, and Eric Bodden. Tracking load-time configuration
options. In ASE, 2014.

[121] Yu Lin. Automated refactoring for Java concurrency. PhD thesis, University of Illinois
at Urbana-Champaign, 2015.

[122] Yu Lin and Danny Dig. Check-then-act misuse of Javaconcurrent collections. In
ICST, 2013.

[123] Mario Linares-Vásquez, Boyang Li, Christopher Vendome, and Denys Poshy-
vanyk. Documenting database usages and schema constraints in database-centric
applications. In ISSTA, 2016.

[124] Peng Liu, Omer Tripp, and Xiangyu Zhang. Flint: fixing linearizability violations.
In OOPLSA, 2014.

[125] Ben Livshits. Standford securibench suite. http://suif.stanford.edu/
˜livshits/securibench/, 2017.

[126] Benjamin Livshits. Improving software security with precise static and runtime analysis.
PhD thesis, Stanford University, 2006.

[127] Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani, and Anindya Banerjee.
Merlin: Specification inference for explicit information flow problems. In PLDI,
2009.

http://suif.stanford.edu/~livshits/securibench/
http://suif.stanford.edu/~livshits/securibench/

216

[128] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták,
JoséNelson Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker,
Anders Møller, and Dimitrios Vardoulakis. In defense of soundiness: a manifesto.
Commun. ACM, 58(2), 2015.

[129] V. Benjamin Livshits and Monica S. Lam. Finding security errors in Java programs
with static analysis. Technical report, Stanford University, August 2005.

[130] Francesco Logozzo and Manuel Fähndrich. Pentagons: a weakly relational ab-
stract domain for the efficient validation of array accesses. In Symposium on Applied
Computing, 2008.

[131] Steffen Lortz, Heiko Mantel, Artem Starostin, Timo Bähr, David Schneider, and
Alexandra Weber. Cassandra: Towards a certifying app store for android. In
Proceedings of the 4th ACM Workshop on Security and Privacy in Smartphones & Mobile
Devices, 2014.

[132] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: statically
vetting android apps for component hijacking vulnerabilities. In Proceedings of the
2012 ACM conference on Computer and communications security, 2012.

[133] Kristis Makris and Rida A Bazzi. Immediate multi-threaded dynamic software
updates using stack reconstruction. In USENIX Annual Technical Conference, 2009.

[134] Kristis Makris and Kyung Dong Ryu. Dynamic and adaptive updates of non-
quiescent subsystems in commodity operating system kernels. In EuroSys, 2007.

[135] Jeremy Manson, William Pugh, and Sarita V Adve. The Javamemory model, vol-
ume 40. ACM, 2005.

[136] Andy Maule, Wolfgang Emmerich, and David S Rosenblum. Impact analysis of
database schema changes. In ICSE, 2008.

[137] Scott McPeak, Charles-Henri Gros, and Murali Krishna Ramanathan. Scalable and
incremental software bug detection. In FSE, 2013.

[138] William S. McPhee. Operating system integrity in os/vs2. IBM Systems Journal,
13(3), 1974.

[139] Jerome Miecznikowski and Laurie Hendren. Decompiling java using staged en-
capsulation. In Working Conference on Reverse Engineering, 2001.

217

[140] Torben Mogensen. Self-applicable online partial evaluation of the pure lambda cal-
culus. In Symposium on Partial Evaluation and Semantics-based Program Manipulation,
1995.

[141] Rajiv Mordani and Shing Wai Chan. Java servlet specification. 2009.

[142] Rashmi Mudduluru and Murali Krishna Ramanathan. Efficient incremental static
analysis using path abstraction. In FASE, 2014.

[143] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. Mining
configuration constraints: Static analyses and empirical results. In ICSE, 2014.

[144] Nomair A. Naeem and Ondrej Lhotak. Typestate-like analysis of multiple interact-
ing objects. In OOPSLA, 2008.

[145] Mayur Hiru Naik. Effective Static Race Detection For Java. PhD thesis, Stanford, 2008.

[146] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Practical dy-
namic software updating for C. In PLDI, 2006.

[147] George C. Necula, Scott McPeak, Shree P. Rahul, and Westley Weimer. Cil: In-
termediate language and tools for analysis and transformation of c programs. In
International Conference on Compiler Construction, 2002.

[148] Flemming Nielson. Tensor products generalize the relational data flow analysis
method. In 4th Hungarian Computer Science Conference, pages 211–225, 1985.

[149] Jeremy W. Nimmer and Michael D. Ernst. Automatic generation of program spec-
ifications. In ISSTA, 2002.

[150] Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins, and
Michael D Ernst. Practical pluggable types for java. In ISSTA, 2008.

[151] Mathias Payer and Thomas R. Gross. Protecting applications against tocttou races
by user-space caching of file metadata. In VEE, 2012.

[152] Mathias Payer and Thomas R. Gross. Protecting applications against TOCT-
TOUraces by user-space caching of file metadata. In VEE, 2012.

[153] Luı́s Pina, Luı́s Veiga, and Michael Hicks. Rubah: DSUfor Javaon a stock JVM. In
OOPSLA, 2014.

218

[154] Lori L. Pollock and Mary Lou Soffa. An incremental version of iterative data flow
analysis. IEEE Transactions on Software Engineering, 15(12), 1989.

[155] Mario Pukall, Christian Kästner, Walter Cazzola, Sebastian Götz, Alexander Greb-
hahn, Reimar Schröter, and Gunter Saake. Javadaptorflexible runtime updates of
Javaapplications. Software: Practice and Experience, 2013.

[156] Dong Qiu, Bixin Li, and Zhendong Su. An empirical analysis of the co-evolution
of schema and code in database applications. In FSE, 2013.

[157] Ariel Rabkin and Randy Katz. Precomputing possible configuration error diag-
noses. In ASE, 2011.

[158] Ariel Rabkin and Randy Katz. Static extraction of program configuration options.
In ICSE, 2011.

[159] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. Static spec-
ification inference using predicate mining. In PLDI, 2007.

[160] Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch, and Mira Mezini.
Call graph construction for java libraries. In FSE, 2016.

[161] Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S Foster, and Adam Porter.
Using symbolic evaluation to understand behavior in configurable software sys-
tems. In ICSE, 2010.

[162] Brianna M. Ren and Jeffrey S. Foster. Just-in-time static type checking for dynamic
languages. In PLDI, 2016.

[163] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL, 1995.

[164] Atanas Rountev, Mariana Sharp, and Guoqing Xu. Ide dataflow analysis in the
presence of large object-oriented libraries. In International Conference on Compiler
Construction, 2008.

[165] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Söderberg, and Collin
Winter. Tricorder: Building a program analysis ecosystem. In ICSE, 2015.

[166] Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural dataflow
analysis with applications to constant propagation. Theor. Comput. Sci., 167(1-2),
1996.

219

[167] Koushik Sen and Gul Agha. Cute and jcute: Concolic unit testing and explicit path
model-checking tools. In CAV, 2006.

[168] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit testing en-
gine for c. In Proceedings of the 10th European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2005.

[169] Ohad Shacham, Nathan Bronson, Alex Aiken, Mooly Sagiv, Martin Vechev, and
Eran Yahav. Testing atomicity of composed concurrent operations. In OOPSLA,
2011.

[170] Ohad Shacham, Eran Yahav, Guy Golan Gueta, Alex Aiken, Nathan Bronson,
Mooly Sagiv, and Martin Vechev. Verifying atomicity via data independence. In
ISSTA, 2014.

[171] Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Braven-
boer. More sound static handling of java reflection. In ASPLAS, 2015.

[172] Amie L. Souter and Lori L. Pollock. Incremental call graph reanalysis for object-
oriented software maintenance. In ICSM, 2001.

[173] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. Boomerang:
Demand-driven flow-and context-sensitive pointer analysis for java. 2016.

[174] Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer Tripp, and
Ryan Berg. F4f: Taint analysis of framework-based web applications. In OOPSLA,
2011.

[175] Robert E Strom and Shaula Yemini. Typestate: A programming language concept
for enhancing software reliability. IEEE Transactions on Software Engineering, (1),
1986.

[176] Ya-Yunn Su, Mona Attariyan, and Jason Flinn. Autobash: Improving configuration
management with operating system causality analysis. In SOSP, 2007.

[177] Gregory T Sullivan. Dynamic partial evaluation. In Programs as Data Objects, pages
238–256. 2001.

[178] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai,
Patrick Lam, Etienne Gagnon, and Charles Godin. Practical virtual method call
resolution for java. In OOPSLA, 2000.

220

[179] Gang Tan and Greg Morrisett. Ilea: Inter-language analysis across java and c. In
OOPSLA, 2007.

[180] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
journal of Mathematics, 5(2), 1955.

[181] Zachary Tatlock, Chris Tucker, David Shuffelton, Ranjit Jhala, and Sorin Lerner.
Deep typechecking and refactoring. In OOPSLA, 2008.

[182] John Toman and Dan Grossman. Staccato: A Bug Finder for Dynamic Configura-
tion Updates. In ECOOP, 2016.

[183] John Toman and Dan Grossman. Taming the static analysis beast. In LIPIcs-Leibniz
International Proceedings in Informatics, volume 71, 2017.

[184] John Toman and Dan Grossman. Legato: An at-most-once analysis with applica-
tions to dynamic configuration updates. In ECOOP, 2018.

[185] John Toman and Dan Grossman. Concerto: a framework for combined concrete
and abstract interpretation. PACMPL, 3(POPL):43, 2019.

[186] Emina Torlak and Satish Chandra. Effective interprocedural resource leak detec-
tion. In ICSE, 2010.

[187] Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival. Reduced product com-
bination of abstract domains for shapes. In VMCAI, 2013.

[188] Jesse A. Tov and Riccardo Pucella. Practical affine types. In POPL, 2011.

[189] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman.
Taj: Effective taint analysis of web applications. In PLDI, 2009.

[190] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman.
Taj: Effective taint analysis of web applications. In PLDI, 2009.

[191] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. Soot-a java bytecode optimization framework. In Proceedings of
the 1999 conference of the Centre for Advanced Studies on Collaborative research, 1999.

[192] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pominville,
and Vijay Sundaresan. Optimizing java bytecode using the soot framework: Is it
feasible? In Compiler Construction, 2000.

221

[193] David Van Horn and Matthew Might. Abstracting abstract machines. In ICFP,
2010.

[194] Willem Visser, Corina S Păsăreanu, and Radek Pelánek. Test input generation for
java containers using state matching. In ISSTA, 2006.

[195] Philip Wadler. Linear types can change the world. In IFIP TC, 1990.

[196] Liqiang Wang and Scott D Stoller. Runtime analysis of atomicity for multithreaded
programs. Transactions on Software Engineering, 2006.

[197] Yi-Min Wang, Chad Verbowski, John Dunagan, Yu Chen, Helen J Wang, Chun
Yuan, and Zheng Zhang. Strider: A black-box, state-based approach to change
and configuration management and support. Science of Computer Programming,
2004.

[198] Mark N Wegman and F Kenneth Zadeck. Constant propagation with conditional
branches. TOPLAS, 13(2), 1991.

[199] Shiyi Wei and Barbara G Ryder. Practical blended taint analysis for javascript. In
ISSTA, 2013.

[200] Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. Symstra: A frame-
work for generating object-oriented unit tests using symbolic execution. In Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems,
2005.

[201] Yingfei Xiong, Arnaud Hubaux, Steven She, and Krzysztof Czarnecki. Generating
range fixes for software configuration. In ICSE, 2012.

[202] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and
Rukma Talwadker. Hey, you have given me too many knobs!: understanding and
dealing with over-designed configuration in system software. In FSE, 2015.

[203] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. Do not blame users for misconfigura-
tions. In SOSP, 2013.

[204] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. Static
control-flow analysis of user-driven callbacks in android applications. In ICSE,
2015.

222

[205] Daniel M Yellin and Robert E Strom. Protocol specifications and component adap-
tors. TOPLAS, 19(2), 1997.

[206] Matteo Zanioli, Pietro Ferrara, and Agostino Cortesi. Sails: Static analysis of infor-
mation leakage with sample. In Symposium on Applied Computing, 2012.

[207] Sai Zhang and Michael D Ernst. Automated diagnosis of software configuration
errors. In ICSE, 2013.

[208] Sai Zhang and Michael D Ernst. Which configuration option should Ichange? In
ICSE, 2014.

[209] Xin Zhang, Ravi Mangal, Mayur Naik, and Hongseok Yang. Hybrid top-down and
bottom-up interprocedural analysis. In PLDI, 2014.

[210] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xinhui Han,
and Wei Zou. Smartdroid: an automatic system for revealing ui-based trigger
conditions in android applications. In Proceedings of the second ACM workshop on
Security and privacy in smartphones and mobile devices, 2012.

[211] Haiyan Zhu, Thomas Dillig, and Isil Dillig. Automated inference of library speci-
fications for source-sink property verification. In ASPLAS, 2013.

223

Appendix A

PROOFS FOR CHAPTER 3

A.1 Preliminaries

Although the environment transformers presented in Chapter 3 gave semantics as deno-

tations from statements to environment transformers, the IDE framework of Sagiv et al.

assigns transformers to edges in the program control flow graph. Following the notation

of Sagiv et al. in [166], assume we have a function M : E∗ → (Env → Env), which maps

an edge in the program control-flow graph to an environment transformer. This function

naturally extends to paths of edges by composing the environment transformers for each

successive edge in a path.

The solution computed by the IDE framework is the meet-over-all-paths solution,1

defined for a distinguished start node s0 and start environment Ω as:

MOP(n) ,
l

p∈path(s0,n)

M(p)(Ω)

In other words, the meet-over-all-paths the meet of applying the transformers for every

path from s0 to n to the start environment Ω.

Our proofs exploit this path-based paradigm: we give the abstract and concrete in-

strumented semantics as assignments of transformers to edges. It is easy to see the

correspondence to the transformers presented in Chapter 3.

1Technically, when considering interprocedural programs, the IDE framework computes the meet-over-
all-valid-paths solution. As we do not consider methods in this section, we instead state our proofs using
the simpler notion of meet-over-all-paths.

224

A.2 Concrete Instrumented Semantics

We first define the domain of concrete instrumented states as: S = (X → P(N))×N,

where X is the finite domain of variables that appear in a given program. We denote

a concrete instrumented state of type S with 〈env, c〉. The instrumented semantics are

given by the following assignment of transformers of type S→ S to edges in the program

supergraph:

if e then s1 else s2 → s1 , id (A.1)

if e then s1 else s2 → s2 , id (A.2)

while e do s end→ s , id (A.3)

while e do s end→ s ′ , id (A.4)

skip→ s , id (A.5)

x = y→ s , λ〈env, c〉.〈env[x 7→ env[y]], c〉 (A.6)

x = c→ s , λ〈env, c〉.〈env[x 7→ ∅], c〉 (A.7)

x = y+ z→ s , λ〈env, c〉.〈env[x 7→ env[y]∪ env[z]], c〉 (A.8)

x = get`()→ s , λ〈env, c〉.〈env[x 7→ {c}], c+ 1〉 (A.9)

Where the edge in Equation (A.1) refers to the edge from the conditional header to the

node corresponding to the branch statement s1, and similarly for Equation (A.2) and the

false branch s2. The edge in Equation (A.3) corresponds to when the loop condition is

true, and the loop body executed, whereas the edge in Equation (A.4) is when the loop

condition is false and the loop is skipped. All other edges refer to the (unique) edge

from a statement to its successor in the supergraph.

Define C(p) as the composition of the transformers corresponding to each edge in

the path p. Let Ω be the initial instrumented state, defined to be: 〈λ .∅, 0〉.

225

A.3 Abstract Semantics

Let the domain of primed labels be denoted by L = ̂̀n ∪ {>,⊥}. The environments used

in the paper are of type Ŝ = X → L. We will denote environments of type Ŝ with ênv.

The distributive environment transformers in Sections 3.3.2 and 3.3.3 are equivalent to

the transformers of type Ŝ→ Ŝ assigned to the edges in the supergraph:

if e then s1 else s2 → s1 , id (A.10)

if e then s1 else s2 → s2 , id (A.11)

while e do s end→ s , id (A.12)

while e do s end→ s ′ , id (A.13)

skip→ s , id (A.14)

x = y→ s , λênv.ênv[x 7→ ênv[y]] (A.15)

x = c→ s , λênv.ênv[x 7→ >] (A.16)

x = y+ z→ s , λênv.ênv[x 7→ ênv[y]u ênv[z]] (A.17)

x = get`()→ s , λenv.λv.


̂̀ if v = v ′

̂̀n+1 if env(v ′) = ̂̀n
env(v ′) o.w.

(A.18)

Where the edges have the same interpretation as those given for the concrete semantics.

At first glance, the use of id for loops and conditionals may appear incorrect. However,

because the IDE framework computes the meet over all paths solution, the final result of

the analysis takes the meet of all paths through a conditional, giving us the same effect.

A similar observation applies for computing loop fixpoints.

Let A(p) be the composition of the environment transformers corresponding to each

edge in the path p, and let the initial abstract state Ω̂ be defined to be >
Ŝ
, i.e., an

environment that maps all variables to >.

226

A.4 Proof

Define the invariant relation for two states as follows, 〈env, c〉 ∼ ênv iff the following

conditions hold:

∀x.|env[x]| > 1⇒ ênv[x] = ⊥ (Invariant 1)

∀x,y,m,n.m 6= n∧ env[x] = {m}∧env[y] = {n}⇒ ênv[x] 6= ênv[y]∨ ênv[x] = ⊥∨ ênv[y] = ⊥

(Invariant 2)

∀x.env[x] 6= ∅ ⇔ ênv[x] 6= > (Invariant 3)

We now show that:

Theorem 7.

∀n,n ′,p,p ′.p ′ ≡ p ◦n ◦n ′ ∧ p ′ ∈ path(s,n ′)∧C(p ◦n)(Ω) ∼ A(p ◦n)(Ω̂)

⇒ C(p ′)(Ω) ∼ A(p ′)(Ω̂)

Theorem 7 states that if the invariant holds for the two environments yielded by the

transformers along the path p ◦ n, the invariant still holds after applying the respective

transformers for the edge n→ n ′.

Proof. Let C(p ◦ n)(Ω) = 〈env, c〉 and A(p ◦ n)(Ω̂) = ênv, and let C(p ′)(Ω) = 〈env ′, c ′〉

and A(p ′)(Ω̂) = ênv
′. We assume 〈env, c〉 ∼ ênv and must show that 〈env ′, c ′〉 ∼ ênv

′.

We proceed on the type of edge n → n ′ that makes up the final component of the path

p ′.

Cases (A.1), (A.2), (A.3), (A.4), (A.5), (A.6), (A.7): Trivial

Case (A.8): It suffices to show that after executing the environment transformer all in-

variants hold for the variable x on the left-hand side of the assignment.

Invariant 1 If |env[y]| > 1 or |env[z]| > 1 then by definition of ∼, ênv[y] = ⊥

or ênv[z] = ⊥, and by the definition of meet, ênv ′[x] = ênv[y] u ênv[z] = ⊥,

227

preserving the invariant. Consider the case now where |env[y]| = 1∧|env[z]| =

1∧ env[y] 6= env[z]. Then by the definition of ∼, ênv[y] 6= ênv[z] or one or both

of ênv[y] and ênv[z] is ⊥. In either case, ênv ′[x] = ênv[y] u ênv[z] = ⊥, again

preserving the invariant.

Invariant 2 If env ′[x] = {m} = env[y]∪ env[z], then either:

1. env[y] = {m} and env[z] = {m}. Then by invariant 3, we have that

ênv[y] 6= > and ênv[z] 6= >. If either ênv[y] or ênv[z] is⊥, then ênv ′[x] = ⊥

and the condition is trivially satisfied. Similarly, if ênv[y] and ênv[z] are

distinct, non-⊥ values, then ênv ′[x] will be ⊥ and again the invariant is

trivially satisfied. Finally, consider the case where ênv[y] = ênv[z]. Then

ênv
′[x] = ênv[y] = ênv[z], and thus the invariant must hold by transitivity

of equality and the invariant relation on the input environments.

2. env[y] = {m} and env[z] = ∅. Then invariant 3 implies that ênv[y] 6= >

and ênv[z] = >, whence ênv ′[x] = ênv[y]. If ênv[y] = ⊥ then the invariant

is trivially satisfied, otherwise the invariant holds from the transitivity of

equality and the invariant on the input environments.

3. env[y] = ∅ and env[z] = {m} follows from symmetric reasoning to the

above.

Invariant 3 If env ′[x] 6= ∅, then env[y] 6= ∅∨ env[z] 6= ∅. By invariant 3 on the input

environments, this implies that ênv[y] 6= >∨ ênv[z] 6= >. By the definition of

meet, we must have ênv ′[x] 6= > as required.

To establish the other direction of the bi-implication, it suffies to show that

env ′[x] = ∅ ⇒ ênv
′[x] = >. If env ′[x] = ∅, then env[y] = ∅ ∧ env[z] = ∅,

whence by the invariant on the input environments, we have ênv[y] = >∧

ênv[y] = >. As >u> = >, we have the desired result.

Case (A.9): We again establish the invariants post assignment.

228

Invariants 1 and 3 Trivial.

Invariant 2 By simple proof by contradiction, it can be shown that c is greater

than any version number that appears in env. Thus, as env ′[x] = {c} is distinct

from all other singleton version sets, it suffices to show that ênv ′[x] is like-

wise distinct from all other abstract versions. As the environment transformer

in (A.18) adds a prime to existing values of the form ̂̀n, this ensures that

ênv
′[x] = ̂̀ is unique within ênv ′. Finally, for y 6= x, the priming process pre-

serves inequality between abstract resource versions, ensuring the invariant

holds.

Corollary 7.1. ∀n,p.p ∈ path(s,n)⇒ C(p)(Ω) ∼ A(p)(Ω̂)

Proof. By straightforward induction on path length and application of Theorem 7.

We can now state the main soundness result:

Theorem 8. ∀p,n, x.p ∈ path(s,n)∧ |C(p)(Ω)[x]| > 1⇒
[d

q∈path(s,n)A(q)(Ω̂)
]
[x] = ⊥

In other words, Theorem 8 states that if any execution, at some point in the program

a variable is derived from multiple versions of the resource, the analysis derives ⊥ for

that variable at that point.

Proof. Observe that if, for some x, |C(p)(Ω)[x]| > 1, then A(p)(Ω̂)[x] = ⊥ by Corollary 7.1,

and by the definition of meet,
d
q∈path(s,n)A(q)(Ω̂)[x] = ⊥

229

Appendix B

PROOFS FOR CHAPTER 6

B.1 Proofs for Section 6.4

B.1.1 Soundness of I>

We now prove that αF ◦ F v I> ◦αF. We first note the following fact about αF that we will

exploit during our proofs:

∀~̀,~̀ ′, r, r ′, x,y.V(r[~̀], x) ⊆ V(r ′[~̀],y)⇒ αF(r)[~̀][x] v αF(r ′)[~̀ ′][y] (B.1)

αv(∅) = ⊥Â (B.2)

To begin, we will ignore the “initial state” term from the definition of F, and first

prove I> sound with respect to:

F0(r)[~̀] =


⋃

p∈pred(`)
in∈r[p• `◦]

stepF(in, `) ~̀ = s◦ s•

F(r)[~̀] o.w.

which is the original concrete semantic function without the intialization term. We first

prove that the inequality holds for some arbitrary r and `◦ `•. We first need the

following lemmas.

Lemma 1. ∀~̀, r, s̃.αF([~̀ 7→ FL])[~̀] v s̃⇒ αF ◦F0(r)[~̀] v s̃where FL = F0(r)[~̀] and [~̀ 7→ s] : R

is shorthand for ⊥R[~̀ 7→ s].

Proof. For every x, V(F0(r)[~̀], x) = V([~̀ 7→ FL][~̀], x), and thus by (B.1), αF([~̀ 7→ FL])[~̀][x] =

αF(F0(r))[~̀][x]. By transitivity, we have αF ◦ F0(r)[~̀] v s̃.

Intuitively, Lemma 1 ensures that to establish pointwise inequality, it suffices to con-

sider the abstracted state for each ~̀ individually.

230

Lemma 2.

∀r, `,p ∈ pred(`), s̃.(
∀〈in,E〉 ∈ r[p• `◦].αF([` 7→ stepF(〈in,E〉, `)])[`] v s̃

)
⇒ αF([` 7→ FL])[`] v s̃

where FL is defined as in Lemma 1.

Proof. First, we show that ⊥
R̃
[` 7→ s̃] is an upper bound for the set {αF(m) | m ∈ M},

where M = {[` 7→ stepF(〈in,E〉, `)] | p ∈ pred(`)∧ 〈in,E〉 ∈ r[p• `◦]}. Let m be some

element of M. By assumption, αF(m)[`] v s̃, so it remains to show that ∀` ′.αF(m)[` ′] v

⊥
R̃
[` 7→ s̃][` ′] = ⊥

S̃
. This follows from the fact that for any x, αF(⊥R)[` ′][x] = ⊥Ṽ (where

⊥
Ṽ

is ⊥
Â

or ∅, depending on the type of x) and by (B.1) and V(⊥R[` ′], x) = ∅ = V(m[` ′], x),

whence we have that αF(m)[` ′][x] = ⊥
Ṽ

.

Next, observe that [` 7→ FL] = [` 7→
⋃

p∈pred(`)
〈in,E〉∈r[p• `◦]

stepF(〈in,E〉, `)] which is equivalent

to
⊔

p∈pred(`)
〈in,E〉∈r[p• `◦]

[` 7→ stepF(〈in,E〉, `)], i.e.,
⊔
M. As αF preserves least upper bounds, and

from the fact that ⊥
R̃
[` 7→ s̃] is an upper bound of the set {αF(m) | m ∈M}, we have that:

αF(
⊔

p∈pred(`)
〈in,E〉∈r[p• `◦]

[` 7→ stepF(〈in,E〉, `)]) v ⊥
R̃
[` 7→ s̃], from which it is immediate that

αF([` 7→ FL])[`] v s̃.

Lemma 2 implies that to show an abstract state s̃ over-approximates the result of step-

ping all incoming concrete states, it suffices to show that s̃ over-approximates stepping

each individual incoming state. We now show that for any ` and r, I>(αF(r))[`◦ `•] is

such an s̃.

Lemma 3. ∀r, `, in,p ∈ pred(`).〈in,E〉 ∈ r[p• `◦] :

1.

∀x,y.V(stepF(〈in,E〉, `), x) ⊆ V({〈in,E〉},y)

⇒ αF([` 7→ stepF(〈in,E〉, `)])[`][x] v
(⊔
p ′∈pred(`)

αF(r)[p
′• `◦]

)
[y]

231

2. αF([` 7→ stepF(〈in,E〉, `)])[`] v I>(αF(r))[`]

Proof.

1. 〈in,E〉 ∈ r[p• `◦] implies that V({〈in,E〉},y) ⊆ V(r[p• `◦],y), whence by

transitivity and (B.1) we then have:

αF([` 7→ stepF(〈in,E〉, `)])[`][x] v αF(r)[p• `◦][y]

Transivity and least upper bounds gives

αF([` 7→ stepF(〈in,E〉, `)])[`][x] v αF(r)[p• `◦][y] v
⊔

p ′∈pred(`)
αF(r)[p

′• `◦][y]

2. By the pointwise definition of the domains, it suffices to show that:

∀x.αF([` 7→ stepF(〈in,E〉, `)])[`][x] v step>(ĩn, `)[x]

v I>(αF(r))[`][x]

where ĩn =
⊔
p ′∈pred(`) αF(r)[p

′• `◦]. As an immediate consequence of part 1

above, we can conclude that if all states produced by stepF retain the original value

of x, and that step> likewise does not change the value of x from ĩn, the inequality

holds at x.

We proceed by the branches of step>:

Case (6.5): step> simply returns ĩn, and stepF(〈in,E〉, `) must return {〈in,E〉} and

by the above argument, the inequality holds for all x.

Case (6.6): We must only establish the inequality for the left-hand side of the as-

signment. As V(stepF(〈in,E〉, `), lhs) = V({〈in,E〉}, rhs), we have by part (1)

above:

αF([` 7→ stepF(〈in,E〉, `)])[`][lhs] v ĩn[rhs] = step>(ĩn, `)[lhs]

232

Case (6.7): As above, we need only establish that the relationship holds for the lhs.

By definition of stepF, V(stepF(〈in,E〉, `), lhs) = V({〈in[lhs 7→ JbcfK],E〉}, lhs) =

{JbcfK}. By the definition of αF:

αF([` 7→ stepF(〈in,E〉, `)])[`][lhs] = {JbcfK}

= ĩn[lhs 7→ {JbcfK}][lhs]

= step>(ĩn, `)[lhs]

Case (6.8): Except for the lhs, every variable in each state produced by stepF re-

tains its original value in in, and thus we must only show that the inequality

holds for lhs. Define the set O = {r | 〈r,E ′〉 ∈ JfopK(E, in[v1], . . . , in[vn]} where

v1, . . . , vn are the variable arguments to the fop. By the definition of αF, αF([` 7→

stepF(〈in,E〉, `)])[`][lhs] = O. Consider now the value of step>(ĩn, `)[lhs]. If it

is >F, then the result trivially again holds. Otherwise, we can again conclude

that step>(ĩn, `)[lhs] = J̃fopK(ĩn[v1], . . . , ĩn[vn]) 6= >F, whence by the the defi-

nition of J̃fopK, we may further conclude that ĩn[v1], . . . , ĩn[vn] 6= >F. By the

definition of least upper bounds and from the definition of αF, we must then

have: in[v1] ∈ ĩn[v1]∧ . . .∧ in[vn] ∈ ĩn[vn]. As E ∈ E, from the definition of

J̃fopK we have O ⊆ J̃fopK(ĩn[v1], . . . , ĩn[vn]) = step>(ĩn, `)[lhs] as required.

Case (6.9): By definition of αF, αF([` 7→ stepF(〈in,E〉, `)])[`][lhs] = v̂ : Â v >
Â

=

step>(ĩn, `)[lhs].

Let us now prove soundness of I> w.r.t F0 for `◦ `•:

Lemma 4. ∀`, r.αF ◦ F0(r)[`◦ `•] v I> ◦αF(r)[`◦ `•]

Proof. Immediate from Lemmas 1 and 2, and Lemma 3 part 2.

Lemma 5. ∀p• `◦, r.αF ◦ F0(r)[p• `◦] v I> ◦αF(r)[p• `◦]

233

Proof. As αF(⊥R) = ⊥
R̃
, if F0(r)[p• `◦] = ∅ the inequality trivially holds. Otherwise,

by definition, F0(r)[p• `◦] ⊆ r[p], and thus αF(F0(r))[p• `◦] v αF(r)[p] (where p is

shorthand for p◦ p•). If F̃T(αF(r),p• `◦) is true, then I>(αF(r))[p• `◦] = αF(r)[p]

as required. It therefore suffices to show that F0(r)[p• `◦] 6= ∅ ⇒ F̃T(αF(r),p• `◦).

We proceed by cases on the form of prog[p]. If p ∈ `f and prog[p] is conditional over

x and y with target `, then there exists some state s ∈ r[p] such that s[x]J<=>Ks[y]. If

either αF(r)[p][x] = >F or αF(r)[p][y] = >F, then by definition αF(r)[p][x]J̃<=>KαF(r)[p][y]

is trivially true. Otherwise, by the definition of αF, s[x] ∈ αF(r)[p][x] and similarly for

s[y] and αF(r)[p][y], thus αF(r)[p][x]J̃<=>KαF(r)[p][y] ⇒ F̃T(αF(r),p• `◦). A similar

argument holds for when p ∈ `f, and prog[p] is a condition with fallthrough target `.

Finally, for any other statement, F̃T is trivially true.

We can now prove our main result:

Proof of Theorem 4. For ~̀ 6= s◦ s•, αF ◦ F0 is equivalent to αF ◦ F, whence the result

holds from Lemmas 4 and 5. It remains to show that the proof holds at ~̀ = s◦ s•

(which we will abbreviate in the following as s).

We must show that, for some arbitrary r, αF(F(r))[s] v I>(αF(r))[s]. By reasoning

similar to Lemma 1, it suffices to show:

αF([s 7→
⋃

p∈pred(`)
in∈r[p• `◦]

stepF(in, `)]t [s 7→
⋃
e∈ιE

stepF(〈ιS, e〉, `)]) v I>(αF(r))

As αF is a complete join morphism, this is equivalent to showing that:

αF([s 7→ F0(r)[~̀]])tαF([s 7→
⋃
e∈ιE

stepF(〈ιS, e〉, `)]) v I>(αF(r))

By Lemmas 2 and 3, we have the necessary bound for the first term of the join. It

therefore remains to show that:

αF([s 7→
⋃
e∈ιE

stepF(〈ιS, e〉, `)]) v I>(αF(r))

234

for which it suffices to to show that:

αF([s 7→
⋃
e∈ιE

stepF(〈ιS, e〉, `)])[s] v step>(⊥
S̃
, `) v I>(αF(r))[s]

This result holds as a special case of the reasoning from the proof of Lemma 3 part 2.

Comment 8.1 (Soundness of Finitization). Note that in the proofs of Lemmas 3 and 5

we were careful to show that soundness is preserved when any J̃fopK returns >F or if the

abstraction process returns>F, which justifies the soundness of our finitization approach.

B.1.2 Soundness of Combined Interpretation

Proof of Theorem 5. We proceed by cases on the components of R, for some input argu-

ment X.

Case ~̀ ∈ LA: We must show that αC ◦F(X)[~̀] = αA(F(X))[~̀] v C(αC(X))[~̀] = F̂◦ înj(αC(X))[~̀] =

F̂(înj(αC(X)))[~̀]. By assumption, we have that αA(F(X))[~̀] v F̂(αA(X))[~̀], so it suf-

fices to show that αA(X) v înj(αC(X)). For labels in LA, the inequality is im-

mediate. For labels in LF, we have αA(X)[~̀] v τ̂(αF(X)[~̀]) = înj(αC(X))[~̀] from

assumption (6.12).

Case ~̀ ∈ LF: As above, by the soundness of I>, we have that αF(F(X))[~̀] v I>(αF(X))[~̀],

so it suffices to show that αF(X) v ĩnj(αC(X)). As in the above case, the inequal-

ity immediately holds at labels in LF. Otherwise we have ∀~̀ ′ ∈ LA.αF(X)[~̀ ′] v

τ̃(αA(X)[

edel ′]) = ĩnj(αC(X))[~̀
′] by (6.13).

B.1.3 Increased Precision

Lemma 6. C ◦ p̂roj v
R̂→R p̂roj ◦ F̂

235

Proof. Suffices to show that, for an arbitrary r̂, for all ~̀, C ◦ p̂roj(̂r)[~̀] v p̂roj ◦ F̂(̂r)[~̀].

Before proceeding we observe that: ĩnj ◦ p̂roj = ˙̃τ and înj ◦ p̂roj = id.

By cases on whether ~̀ ∈ LF or ~̀ ∈ LA:

Case ~̀ ∈ LA: Then C ◦ p̂roj(̂r)[~̀] = F̂ ◦ înj ◦ p̂roj(̂r)[~̀]. Because înj ◦ p̂roj = id, we must

show F̂(̂r)[~̀] v p̂roj ◦ F̂(̂r)[~̀] = F̂(̂r)[~̀] which holds trivially as p̂roj is the identity at

LA.

Case ~̀ ∈ LF: Then we must show that I> ◦ ĩnj ◦ p̂roj(̂r)[~̀] = I>(˙̃τ(̂r))[~̀] v p̂roj ◦ F̂(̂r)[~̀] =

τ̃(F̂(̂r)[~̀]) = ˙̃τ(F̂(̂r))[~̀]. By assumption, LB ◦ ˙̃τ v ˙̃τ ◦ F̂, so it suffices to show that

I> ◦ ˙̃τ(̂r)[~̀] v LB ◦ ˙̃τ(r)[~̀]. By cases on the form of ~̀ ∈ LF:

Subcase ~̀ = `◦f `•f : From the definitions of I> and LB, we must show that:

step>(s̃, `f) v stepLB(s̃, `f)

where s̃ =
⊔
p∈pred(`f)

˙̃τ(̂r)[p• `◦f]. For branches (6.15) and (6.16) in stepLB,

the corresponding branch (6.5) and (6.6) in step> clearly yield identical results.

As branch (6.18) returns s̃[x 7→ >F], and the corresponding branches (6.7) and

(6.8) of step> produce states of the form: s̃[x 7→ v] (where v is some member

of P(Vf)
>), the inequality trivially holds. Finally, we do not have to consider

branch (6.17) of stepLB nor branch (6.9) of stepF because the syntactic constraints

of the language rule such cases out for a label of the form `f.

Finally, if ` = s, we must additionally show that step>(⊥
S̃
, s) v stepLB(⊥

S̃
, s).

This follows by the same reasoning as above.

Subcase ~̀ = `•f `◦: By definition, I>(˙̃τ(̂r))[`•f `◦] either returns ˙̃τ(̂r)[`◦f `•f] or

⊥. As LB(˙̃τ(̂r))[`•f `◦] = ˙̃τ(̂r)[`◦f `•f], the inequality trivially holds.

236

Lemma 7. Assume for two complete lattices T and T̂ , a complete-join morphism µ : T̂ → T , and

two functions F : T → T , F̂ : T̂ → T̂ we have that F ◦ µ v
T̂→T µ ◦ F̂. Assume then we have two

Ord termed sequences defined via transfinite recursion as:

F0 = ⊥T
Fδ+1 = F(Fδ)

Fλ =
⊔
β<λ F

β

F̂0 = ⊥
T̂

F̂δ+1 = F̂(F̂δ)

F̂λ =
⊔
β<λ F̂

β

Then for any δ ∈ Ord, Fδ v µ(F̂δ)

Proof. By transfinite induction.

Case δ = 0: Then F0 = ⊥T = µ(⊥
T̂
) = µ(F̂0), where the equality between ⊥ terms comes

from the fact that µ is a complete join-morphism.

Case δ+ 1: Assume Fδ v µ(F̂δ). By the monotonicity of F, we have that Fδ+1 = F(Fδ) v

F(µ(F̂δ)), so it suffices to show that F(µ(F̂δ)) v µ(F̂δ+1). Further, by definition F̂δ+1 =

F̂(F̂δ), thus we must show that F ◦ µ(F̂δ) v µ ◦ F̂(F̂δ), which holds by assumption.

Case δ = λ: By the inductive hypothesis, ∀β < λ.Fβ v µ(F̂β), thus

Fλ =
⊔
β<λ

Fβ v
⊔
β<λ

µ(F̂β) = µ(
⊔
β<λ

F̂β) = µ(F̂λ)

Where the second-to-last equality follow from µ being a complete join morphism.

Proof of Theorem 6. From the definition of lfpC and lfp F̂ as the limit of the ordinal termed

sequences defined as in Lemma 7, Lemma 6, that p̂roj is a complete join morphism from

part 3 of assumption Equation (6.19), Lemma 7 gives us that lfpC v p̂roj(lfp F̂). As înj

is monotone, we have: înj(lfpC) v înj ◦ p̂roj(lfp F̂), whence we have înj(lfpC) v lfp F̂ as

înj ◦ p̂roj = id as observed in the proof of Lemma 6.

237

B.2 Proofs For Section 6.5

We note that Equation (B.1) still applies under the updated definition of V.

Updated Proof for Theorem 4. We begin by noting that for the intraprocedural fragment of

the language, the proofs of soundness given Appendix B.1.1 generalize naturally to the

new definition of states. As an informal argument as to why: note that the definition of

V given above only considers the values of variables in the stack frame of the currently

executing method. From the definition of αF, this in turn implies that the values in

the abstracted state are exclusively determined by the concrete values in the active state

frame. Finally, as the intraprocedural fragment of the language manipulates only the ac-

tive stack frame, the arguments made in Appendix B.1.1 translate naturally the extended

state definition. Finally, although we have extended the intraprocedural fragment of the

language with a return statement, the semantics of this statement given by step> and

stepF are simply a special case of an assignment statement, and the argument given in

the proof of Lemma 3 easily applies to this statement as well.

We therefore only concern ourselves with establishing soundness with respect to the

newly defined interprocedural fragment. By Lemma 1, it suffices to establish soundness

for each new type of edge individually. Without loss of generality, we proceed to prove

soundness for some arbitrary instance of each type of edge and for some r.

Case `◦c `•c: By reasoning similar to Appendix B.1.1, it suffices to show that

αF([`c 7→
⊔

p∈pred(`c)
r[p• `◦c]])[`c] v I>(αF(r))[`c]

=
⊔

p∈pred(`c)
αF(r)[p

• `◦c]

238

From the definition of the domain R, we have:

αF([`c 7→
⊔

p∈pred(`c)
r[p• `◦c]]) = αF(

⊔
p∈pred(`c)
in∈r[p• `◦c]

[`c 7→ {in}])

=
⊔

p∈pred(`c)
in∈r[p• `◦c]

αF([`c 7→ {in}])

By the definition of least upper bounds, it suffices to show that, for some arbitrary

p ′ ∈ pred(`c), in ∈ r[p ′• `◦c]:

αF([`c 7→ {in}])[`c] v
⊔

p∈pred(`c)
αF(r)[p

• `◦c]

We show that αF([`c 7→ {in}])[`c] v αF(r)[p ′• `◦c], whence by the definition of least

upper bounds and transitivity we will have the desired result.

For some arbitrary variable v, from the fact that in ∈ r[p ′• `◦c], it is immediate

that:

V([`c 7→ {in}][`c], v) = V({in}, v) ⊆ V(r[p ′• `◦c], v)

whence by Equation (B.1) we have that αF([`c 7→ {in}])[`c][v] v αF(r)[p ′• `◦c][v], as

required.

Case p• `◦r : Trivial, by the definition of αF and reasoning similar to the above.

Case `•c ` ′◦: We first abbreviate `•c ` ′◦ as ~c and (as usual) `◦c `•c as `c. By reasoning

similar to that in case `◦c `•c, it suffices to show that:⊔
〈s◦sr,R,E〉∈r[`c]

αF([~c 7→ {〈~s ◦ sr ◦ [p 7→ sr[y]],R ◦ `,E〉])[~c] v [p 7→ αF(r)[`c][y]]

for which it suffies to show, for some arbitrary 〈~s ◦ sr,R,E〉 ∈ r[`c] that:

αF([~c 7→ K])[~c] v [p 7→ αF(r)[`c][y]]

239

where K = {〈~s ◦ sr ◦ [p 7→ sr[y]],R ◦ `,E〉}. From the new definition on V, for any

variable v 6= p, it is immediate that V(K, v) = ∅, whence we have that:

αF([~c 7→ K])[~c][v] = αF(⊥R)[~c][v]

= ⊥
R̃
[~c][v] =

[
p 7→ αF(r)[`c][y]

]
[v]

It therefore remains to show that

αF([~c 7→ K])[~c][p] v
[
p 7→ αF(r)[`c][y]

]
[p] = αF(r)[`c][y]

From the definition of K, we have that

V(K,p) = {sr[y]} ⊆ V(r[`c],y)

whence by Equation (B.1) we have the desired result.

Case `◦r `•r : We will prove that, for some some arbitrary r, p ∈ pred(`r), 〈~s ◦ sr ◦

sc,R,E〉 ∈ r[p• `◦r] where 〈~s ◦ sr,R,E〉 ∈ r[`◦c `•c] that:

αF([`r 7→ J])[`r] v αF(r)[`c]
[
x 7→ αF(r)[p

• `◦r][ρ]
]

where J = {〈~s ◦ sr[x 7→ sc[ρ]],R,E〉}

For any variable v 6= x, we have that V(J, v) ⊆ V(r[`c], v), whence the inequality

holds by Equation (B.1). For the variable x, we have that V(J, x) ⊆ V(r[p• `◦r], ρ),

whence the inequality again holds by assumption on αF.

B.3 Formalisms and Proofs for Subfixpoint Iteration

Before defining subfixpoint iteration, we introduce the following notation. Letm : T → U

be a map, where U is a complete lattice. For S ⊆ T , define:

m�| S = λx.

m[x] x ∈ S

⊥U o.w.

240

We will abuse notation and for an element 〈m̂, m̃〉 : R, define 〈m̂, m̃〉|LA = m̂ and

〈m̂, m̃〉|LF = m̃.

We define the subfixpoint iteration process as a function M : R→ R:

M(X) =
〈 ⊔
i<ω

Ui(înj(X))|LA ,
⊔
i<ω

T(ĩnj(X)�| LA)
i(⊥)|LF

〉
U(X) = X�| LF t F̂(X)�| LA

T(m)(X) = m�| LA t I>(X)�| LF

In the above definitions, the U and T play the role of iterating the two interpreters to

fixpoint.1 In the definition of U, after abstract semantic function F̂ is applied to the input

argument, the results from this application in LF are discarded in favor of the values in

the input argument X. Thus, while iterating Ui(înj(X)), the states at flow edges LF are

effectively fixed to înj(X)�| LF , while the states at flow edges LA evolve through repeated

application of F̂. The definition of T is similar; except the state information in application

code is fixed while the state information in the framework evolves via application of I>.

Unlike the ti<ωUi(înj(X)) term, ti<ωT(ĩnj(X)�| LA)
i(⊥) iterates from bottom, discarding

information computed in previous rounds of iteration as described in Section 6.6.

We first prove that M is monotone.

Lemma 8.

1. ∀m,m ′,X,X ′ : R̃.m v m ′ ∧X v X ′ ⇒ T(m)(X) v T(m ′)(X ′)

2. ∀m,m ′,X,X ′ : R̃.m v m ′ ∧X v X ′ ⇒ ti<ωT(m)i(X) v ti<ωT(m ′)i(X ′)

3. ∀X,X ′ : R̂.X v X ′ ⇒ U(X) v U(X ′)

4. ∀X,X ′ : R̂.X v X ′ ⇒ ti<ωUi(X) v ti<ωUi(X ′)

1We have not justified here that the term ti<ωUi(înj(X)) is a fixpoint of U, nor that a fixed point
of this function exists. However, we chose this definition for the parallel to the widening definitions
presented below; which we prove converges to a fixed-point. If F̂ is ω-upper-continuous, then the U
term converges to a fixpoint, as proved in Appendix B.3.5.

241

Proof.

1. By cases on whether ~̀ ∈ LA or ~̀ ∈ LF:

Case ~̀ ∈ LF: T(m)(X)[~̀] = I>(X)[~̀] v I>(X ′)[~̀] = T(m ′)(X ′)[~̀] by the monotonicity

of I> (by Lemma 18, proved below).

Case ~̀ ∈ LA: T(m)(X)[~̀] = m[~̀] v m ′[~̀] = T(m ′)(X ′)[~̀] by assumption.

2. By induction, using the monotonicity of T shown above it can be shown that ∀i <

ω.T(m)i(X) v T(m ′)i(X ′), whence the result follows from the definition of least

upper bounds.

3. Immediate from the fact that F̂ is monotone.

4. By similar proof to (2) above.

Theorem 9. M is monotone.

Proof. Immediate from parts 2 and 4 of Lemma 8 and the monotonicity of τ̃ and τ̂.

We next define two ordinal termed sequences Cδ∈µ and Mδ∈µ, where µ is an ordinal

defined as in [48], via transfinite recursion as:

C0 = ⊥R
Cδ+1 = C(Cδ)

Cλ =
⊔
β<λ C

β

M0 = ⊥R
Mδ+1 = M(Mδ)

Mλ =
⊔
β<λM

β

As both M and C are monotone functions over complete lattices, then by Corollary 3.3

of [48], the limit of Cδ∈µ, Cε, exists and is the least fixpoint of C and the limit of Mδ∈µ

also exists and is a least fixed point of M.

242

Before proceeding, we first show how to (almost) instantiate the asynchronous chaotic

iteration with memory strategy defined by [46] to give an equivalent definition of sub-

fixpoint iteration. (In the following, for continuity of notation, we will use F as the

monotone function over a lattice (Ln)m → Ln, and not the concrete semantic function of

Section 6.3.2.)

Assume some isomorphism ξ between {0, . . . , |L|} and L. We can define an indexed

representation of an element of R, where Xi corresponds to the mostly-concrete or ab-

stract state at ξ(i). We take m = 3, and for any i such that ξ(i) ∈ LA, define:

Fi(I,E,D) = F̂(înj(η(I,E)))[ξ(i)]

η(I,E) =
〈
λ~̀a : LA.I

ξ−1(~̀a)
, λ~̀f : LF : Eξ−1(~̀f)

〉
η transforms the indexed representation into the product-of-maps representation ex-

pected by înj. When constructing the abstract state map it uses the values from I, and

those from E to construct the mostly-concrete map.

For i such that ξ(i) ∈ LF, define:

Fi(I,E,D) = I>(ĩnj(χ(D)))[ξ(i)]

χ(D) =
〈
λ~̀a : LA.D

ξ−1(~̀a)
, λ~̀f : LF.Dξ−1(~̀f)

〉
Like η, χ transforms the indexed representation into a map representation, using D for

states in LF and LA. Clearly, F ◦ σ = C.

We will now define the ordinal termed sequences S of indices that specify the values

of I, E, and D. When indexing S, we take I = 1, E = 2, and D = 3. Then:

(Sδ+1I)i = δ

(Sδ+1E)i = λ (where λ is the largest limit ordinal 6 δ)

(Sδ+1D)i =


Sδ+1E ξ(i) ∈ LA

0 ξ(i) ∈ LF ∧ δ = λ (where λ is a limit ordinal)

δ o.w.

243

A value of δ ′ in (Sδ+1Y)i indicates that index i of sequence Y(∈ {I,E,D}) should hold the

value of the δ ′th iterate of Fi. We do not define the value of Sj at the limit ordinals as

they are not used during iteration, we assume they take some value consistent with the

requirements given in [46].

These definitions imply that I always holds the values computed in the last round of

iteration, E holds the values computed at the most recent limit ordinal, and D holds the

values of at the most recent limit ordinal for states at LA, ⊥
S̃

for LF at the immediate

successor to some limit ordinal, and the value from the previous iteration otherwise (we

assume that X0i = ⊥ for all i).

It should be clear that the value computed at M(⊥R)[~̀] corresponds to the values

computed at X
ξ−1(~̀) at ω. However, our limiting behavior at all other limit ordinals is

different: M takes the limits of new sequences, whereas at the limit ordinals the sequence

defined in [46] take the limit over the entire preceding sequence of values. In addition,

the definition of SD violates requirement 3.1.(d). As a result, although we have that the

limit of Mδ exists and is a least fixed point of M, it is not immediate that this is equal to

lfpC.

We therefore directly prove our desired result:

Theorem 10. lfpM = lfpC

B.3.1 Technical Lemmas

Before proving Theorem 10 we need the following technical lemmas.

Lemma 9. The function T(m)(X) is ω-upper-continuous in its second argument.

244

Proof.⊔
n

T(m)(xn) =
⊔
n

I>(xn)�| LF tm�| LA

= m�| LA t
⊔
n

I>(xn)�| LF

= m�| LA t I>(
⊔
n

xn)�| LF (by the ω-upper-continuity of I>, see Appendix B.3.1)

= T(m)(
⊔
n

xn)

Theorem 11. The limit of T(m)(i∈N)(⊥) exists and is a fixpoint of T(m) for any m.

Proof. Follows immediately from Lemma 9 and Kleene’s fixpoint theorem.

Let us recall the following facts from [48]:

1. The least upper bound of a (potentially infinite) set S of post-fixed points of a

monotone function F is itself a post-fixed point of F

2. For a monotone function g : L → L on a complete lattice L, the ordinal termed

sequence defined as:

G0 = ⊥L

Gδ+1 = g(Gδ)

Gλ =
⊔
α<λ

Gα

is increasing

Next define the family of sequences Tδm, δ ∈ Ord via transfinite recursion as:

T0m = ⊥
R̃

Tδ+1m = T(m)(Tδm)

Tλm =
⊔
α<λ

Tαm

245

By the monotonicity of T we have that all such sequences are increasing, and by Theo-

rem 11 the limit of all sequences exist and is Tωm.

Lemma 10. ∀m, δ ∈ Ord.Tδm v Tωm

Proof. Immediate from the definition of Tδm and by the fact that Tωm is the least fixpoint

of T(m).

Continuity of I>

We now demonstrate the ω-upper-continuity of I> on increasing chains of R̃.

Lemma 11. For any increasing chain xi : P(Vf)
>, v ∈

⊔
i xi ⇒ ∃k.v ∈ xk

Proof. First, observe that by the definition of least upper bound, if (
⊔
i xi) 6= >F, then

∀i, xi, 6= >F. Thus, by the definition of
⊔

in P(Vf)
> as a union over the sets xi, v ∈

⊔
i xi

implies there is some set in the chain xi, that contains v. We let j be the smallest such xj

containing xj.

Corollary 11.1. For an increasing chain of products ci ≡ 〈x1, . . . , xn〉i : P(Vf)
> × . . .P(Vf)

>,

if there exists some 〈v1, . . . , vn〉 such that ∀j.vj ∈ πj(
⊔
i ci), then there exists some k such that

∀j.vj ∈ πj(ck).

Proof. By pointwise application of Lemma 11, for each j there must be some kj such that

vj ∈ πj(ck). Let m be the max over these kj. As the chain ci is increasing, if vj ∈ πj(ckj),

then necessarily vj ∈ πj(cm).

Lemma 12. J̃fopK is ω-upper-continuous for all increasing chains argi : P(Vf)
>× . . .×P(Vf)

>

Proof. Consider the case where, for some j and k, πj(argk) = >F. Then J̃fopK(argk) = >F,

and further πj(
⊔
i argi) = >F whence J̃fopK(

⊔
i argi) = >F.

Consider now the case where the chain contains no >F values. Then, by the definition

of JfopK and J̃fopK, the sequence J̃fopK(argi) will not contain >F, and thus
⊔
i J̃fopK(argi) will

not equal >F, and similarly J̃fopK(
⊔
i argi) 6= >F.

It therefore suffices to show that v ∈
⊔
i J̃fopK(argi)⇔ v ∈ J̃fopK(

⊔
i argi).

246

Case⇒: By the definition of lub and J̃fopK, ∃k.v ∈ JfopK(argk). But then ∀j.πj(argk) v

πj(
⊔
i argi) and thus by definition of J̃fopK, v ∈ J̃fopK(

⊔
i argi).

Case⇐: If v ∈ J̃fopK(
⊔
i argi), then there must exist some set of values vj and some E ∈ E

such that ∀j.vj ∈ πj(
⊔
i argi) and JfopK(E, v0, . . . , vn) = 〈v, 〉. By Corollary 11.1, there

must be some k, such that ∀j.vj ∈ πj(argk), whence v ∈ J̃fopK(argk) v
⊔
i J̃fopK(argi).

Lemma 13. J̃fopK is pointwise monotone.

Proof. Consider the case of some J̃fopK(v0, . . . , vn) where one of vi = >F. Then, J̃fopK(v0, . . . , vn) =

>F, and for any v ′j , vj v v ′j ⇒ v ′j = >F, whence J̃fopK(v ′0, . . . , v
′
n) = >F, for any values v ′i

pointwise greater than vi. Next, consider the case of some arguments vi v v ′i, where

∀j.vj 6= >F. Then J̃fopK(v0, . . . , vn) 6= >F. If any of v ′i is >F, then monotonicity holds

trivially. Finally, consider when, for each j, vj ⊆ v ′j . Then by the definition of J̃fopK, it is

immediate that J̃fopK(v0, . . . , vn) ⊆ J̃fopK(v ′0, . . . , v
′
n).

Lemma 14. If si : S̃ is an increasing sequence, and if for such sequences
⊔
i f(si) = f(

⊔
i si),

then: ∀x.Q =
⊔
i si[x 7→ f(si)] = (

⊔
si)[x 7→ f(

⊔
i si)] = R.

Proof. Q[x] =
⊔
i f(si) = f(

⊔
i si) = R[x] and Q[y 6= x] =

⊔
i si[y] = (

⊔
i si)[y] = R[y].

Lemma 15. For an increasing sequence si : S̃, ∀`.
⊔
i step>(si, `) = step>(

⊔
i si, `).

Proof. By cases on the branch taken in step>:

Branch (6.5): Trivial

Branches (6.6, 6.7, 6.9): Follows from the Lemma 14 and that λ .>
Â

, λ .{Jbcf K}, and λs.s[y]

are trivially continuous on increasing sequences.

Branch (6.8): From Lemma 14 and Lemma 12.

247

Lemma 16. step> is monotone.

Proof. Immediate from the monotonicity of J̃fopK (Lemma 13), and the definition of step>.

Lemma 17.

1. ∀r̃, r̃ ′,p• `◦.F̃T(̃r,p• `◦)∧ r̃ v r̃ ′ ⇒ F̃T(̃r ′,p• `◦)

2. For an increasing sequence ri, ∀p• `◦.F̃T(
⊔
i ri,p

• `◦)⇔ ∃j.F̃T(rj,p• `◦)

Proof.

1. Let s̃ = r̃[p] and s̃ ′ = r̃ ′[p]. Consider by cases why F̃T returned true:

Branch 6.2 Then s̃[x]J̃<=>Ks̃[y], thus either s̃[x] = >F, s̃[y] = >F, or v ∈ s̃[x] and v ′ ∈

s̃[y] such that vJ<=>Kv ′. In the former two cases, s̃ ′[x] or s̃ ′[y] must also >F, and

thus s̃ ′[x]J̃<=>Ks̃ ′[y]. Consider the final case. Then by definition of v, s̃ ′[x] = >F
or s̃[x] ⊆ s̃ ′[x] and similarly for s̃[y] and s̃ ′[y]. In the case where either s̃ ′[x]

or s̃ ′[y] is >F, then s̃ ′[x]J̃<=>Ks̃ ′[y] trivially returns true. Otherwise, we have

v ∈ s̃ ′[x] and similarly for v ′ and s̃ ′[y], and thus by definition s̃ ′[x]J̃<=>Ks̃ ′[y]

holds.

Branch 6.3 By similar reasoning to the above, but on the definition of J̃< 6=>K.

Branch 6.4 F̃T must always return true.

2. For the forward impliciation, consider by cases why F̃T returned true:

Branch 6.2 By similar reasoning to the above, and without loss of generality, let

us consider the case where (
⊔
i ri)[p][x] = >F. Then, there must exist some j

such that rj[p][x] = >F, and thus F̃T(rj,p• `◦) trivially returns true. The

248

case when (
⊔
i ri)[p][y] = >F follows from similar reasoning. Finally, let us

consider the case where v ∈ (
⊔
i ri)[p][x], v

′ ∈ (
⊔
i ri)[p][y], and vJ<=>Kv ′. By

Corollary 11.1, there must exists some j, such that v ∈ rj[p][x] and v ′ ∈ rj[p][y],

whence rj[p][x]J̃<=>Krj[p][y] and thus F̃T(rj,p• `◦) must return true.

Branch 6.3 By similar reasoning to the above.

Branch 6.4 ∀j.F̃T(rj,p, `) must be true.

The backward impliciation follows immediately from part one of the lemma and

from the fact that ∀j.rj v
⊔
i ri.

Lemma 18. I> is monotone

Proof. Consider some r̃ v r̃ ′, and some arbitrary `◦ `•:

I>(̃r)[`
◦ `•] = step>(

⊔
p∈pred(`)

r̃[p• `◦], `)

v step>(
⊔

p∈pred(`)
r̃ ′[p• `◦], `) (Lemma 16)

= I>(̃r
′)[`]

We have ignored the initialization terms, as it is constant and by the monotonicity of

least upper bounds (as step> is monotone) monotonicity is preserved.

Next, consider some p• `◦, and whether F̃T(̃r,p• `◦) is true. If so, then

Lemma 17 implies that F̃T(̃r ′,p• `◦) must also be true, which from the fact that

r̃[p◦ p•] v r̃ ′[p◦ p•], gives us that I>(̃r)[p• `◦] v I>(̃r
′)[p• `◦]. Otherwise,

I>(̃r)[p
• `◦] = ⊥ v I>(̃r ′)[p• `◦].

We can now prove the continuity of I>.

Theorem 12. For an increasing sequence ri : R̃, I> is continuous.

249

Proof. We first note that the initialization term of I> at the start label s is a constant term

and can be easily factored out.

It suffices to consider an arbitrary `◦ `• and p• `◦.⊔
i

I>(ri)[`
◦ `•] =

⊔
i

step>(
⊔

p∈pred(`)

ri[p
• `◦], `)

= step>(
⊔
i

⊔
p∈pred(`)

ri[p
• `◦], `)

= step>(
⊔

p∈pred(`)

(
⊔
i

ri)[p
• `◦], `)

= I>(
⊔
i

ri)[`]

The second equality follows from tp∈pred(`)ri[p• `◦] being an increasing sequence and

Lemma 15.

Next, let us consider some p• `◦. Consider the case where F̃T(
⊔
i ri,p

• `◦) is

false, thus I>(
⊔
i ri)[p

• `◦] = ⊥. By Lemma 17 (2), we have that ∀j.F̃T(rj,p• `◦) is

also false, and thus
⊔
i I>(ri)[p

• `◦] =
⊔
i⊥ = I>(

⊔
i ri)[p

• `◦].

Finally, consider the case where F̃T(
⊔
i ri,p

• `◦) is true, whence I>(
⊔
i ri,)[p

•

`◦] =
⊔
i ri[p

◦ p•]. By Lemma 17, there exists some j such that ∀k > j.F̃T(rk,p• `◦)

is true. Note that Lemma 17 part 2 implies there exists some j such that F̃T(rj,π), and as

the sequence ri is increasing the monotonicity of F̃T (Lemma 17 part 1) implies that F̃T

will be true for all indices after j. As I> is monotone, we have that I>(ri) is an increasing

sequence, and thus[⊔
i

I>(ri)
]
[p• `◦] =

[⊔
k>j

I>(rk)
]
[p• `◦] (I>(ri) is increasing)

=
⊔
k>j

rk[p
◦ p•] (As ∀k > j.F̃T(rk,p• `◦) must be true)

=
⊔
i

ri[p
◦ p•] (ri is increasing)

= I>(
⊔
i

ri)[p
• `◦]

250

B.3.2 Cε vMε

We first need the following lemmas.

Lemma 19. ∀~̀ ∈ LA,X v X ′ ∈ R.F̂ ◦ înj(X)[~̀] v
⊔
i<ωU

i(înj(X ′))[~̀]

Proof.

F̂(înj(X))[~̀] v F̂(înj(X ′))[~̀] = U(înj(X ′)[~̀] v
⊔
i<ω

Ui(înj(X ′))[~̀]

Lemma 20. ∀m, ` ∈ LA, δ ∈ Ord.δ > 0⇒ Tδm[`] = m[`]

Proof. By an easy transfinite induction argument, at a successor ordinal δ+ 1: Tδ+1m [`] =

T(m)(Tδm)[`] = m[`]

At a limit ordinal, we have that Tλm[`] =
⊔
α<λ T

α
m[`] = ⊥t

⊔
α<λ T

α+1
m [`] =

⊔
α<λ T

α+1
m [`] =⊔

α<λm[`] = m[`]

Lemma 21. ∀δ ∈ µ,m.Cδ|LA v m|LA ⇒ Cδ+1|LF v Tδ+2G |LF where G = ĩnj(m)�| LA

Proof. By transfinite induction on δ:

Case δ = 0: It suffices to show that for some ` ∈ LF, C1[`] = C(⊥R)[`] = I>(ĩnj(⊥R))[~̀] v

T2G[`] = I>(T
1
G)[`]. This follows from the monotonicity of I> if we show that

ĩnj(⊥R) v T1G. At points in LF this is immediate, as ĩnj(⊥R)[~̀
′ ∈ LF] = ⊥S̃ v T1G[

~̀ ′].

At some point ~̀ ′ ∈ LA, observe that ĩnj(⊥R)[~̀
′] = τ̃(⊥

Ŝ
), and by Lemma 20 we

have that T1G[~̀
′] = G[~̀ ′] = ĩnj(m)�| LA [

~̀ ′] = τ̃(m[~̀ ′]), whence the result holds from

the monotonicity of τ̃.

Case δ+ 1: It suffices to show that for some ` ∈ LF we have Cδ+2[`] = I>(ĩnj(C
δ+1))[`] v

Tδ+3m [`] = I>(T
δ+2
m)[`], which holds if we can prove that ĩnj(Cδ+1) v Tδ+2G .

251

As the sequence C is increasing, we have that Cδ v Cδ+1, whence by transitivity

we have that Cδ|LA v m|LA , thus by the inductive hypothesis, we have Cδ+1|LF v

Tδ+2G |LF .

To establish the required inequality, we proceed by subcases on the partition of

some arbitrary ~̀ ′:

Subcase ~̀ ′ ∈ LF: ĩnj(Cδ+1)[~̀ ′] = Cδ+1[~̀ ′] v Tδ+2G |LF[
~̀ ′] = Tδ+2G [~̀ ′], where the in-

equality holds from the application of the inductive hypothesis.

Subcase ~̀ ′ ∈ LA: ĩnj(Cδ+1)[~̀ ′] = τ̃(Cδ+1[~̀ ′]) v τ̃(m[~̀ ′]) = ĩnj(m)[~̀ ′] = G[~̀ ′] =

Tδ+2G [~̀ ′] where the final equality follows from Lemma 20, and the inequality

follows from the assumption Cδ+1|LA v m|LA and the monotonicity of τ̃.

Case δ = λ: If we show that ĩnj(Cλ) v TλG, then we will have, for all ~̀ ∈ LF:

Cλ+1[~̀] = I>(ĩnj(C
λ))[~̀] v I>(TλG)[~̀] = Tλ+1G [~̀] v Tλ+2G [~̀]

Expanding definitions, we must therefore show that

ĩnj(
⊔
β<λ

Cβ) v
⊔
β<λ

TβG = TλG

We show the inequality by cases:

Subcase ~̀ ∈ LA:

ĩnj(
⊔
β<λ

Cβ)[~̀] = τ̃(
⊔
β<λ

Cβ[~̀]) = τ̃(Cλ[~̀]) v τ̃(m[~̀]) = ĩnj(m)�| LA [
~̀] = TλG[~̀]

Where the final equality again follows from Lemma 20.

Subcase ~̀ ∈ LF: It suffices to show that:

ĩnj(
⊔
β<λ

Cβ)[~̀] =
⊔
β<λ

Cβ[~̀] = ⊥t
⊔
β<λ

Cβ+1[~̀] =
⊔
β<λ

Cβ+1[~̀] v TλG[~̀]

that is, TλG[~̀] is an upper bound for every Cβ+1[~̀]

252

By the definition of least upper bounds, we have that ∀α < λ.Cα|LA v Cλ|LA v

m|LA , whence by the transfinite hypothesis we have

∀α < λ.Cα+1[~̀] = Cα+1|LF[
~̀] v Tα+2G |LF[

~̀] = Tα+2G [~̀]

v
⊔
β<λ

TβG[
~̀] = TλG[~̀]

which shows the upper bound as required.

Now, to prove Cε vMε, we prove the following:

Lemma 22. ∀δ ∈ µ.Cδ vMδ

Proof. By transfinite induction on δ.

Case δ = 0: Trivial, C0 = ⊥ = M0

Case δ+ 1: It suffices to show that for any ~̀ ∈ LA, Cδ+1[~̀] v Mδ+1[~̀] and similarly for

~̀ ∈ LF.

Subcase ` ∈ LA: We must show that:

C(Cδ)[~̀] = F̂(înj(Cδ))[`] v
⊔
i<ω

Ui(înj(Mδ))[~̀]

which follows from the induction hypothesis, the monotonicity of înj, and

Lemma 19.

Subcase ` ∈ LF: We must show that Cδ+1[`] v [
⊔
i<ω T(ĩnj(M

δ)�| LA)
i(⊥)][`] = TωG [`],

where G = ĩnj(Mδ)�| LA . From the induction hypothesis, we have that Cδ v

Mδ, from which it follows that Cδ|LA v Mδ|LA . Thus, by Lemma 21 we con-

clude that:

Cδ+1[`] v Tδ+2G [`] v TωG [`] (by Lemma 10)

253

Case δ = λ: Follows immediately from the definition of least-upper bound, transitivity,

and the fact that, ∀β < λ.Cβ vMβ.

Theorem 13. Cε vMε

Proof. Immediate from Lemma 22.

B.3.3 Mε v Cε

We first need the following lemma:

Lemma 23. ∀i ∈N,X : R.X v Cε ⇒ T(ĩnj(X)�| LA)
i(⊥) v ĩnj(Cε)

Proof. By induction on i.

Case i = 0: Trivial

Case i+ 1: We assume T(ĩnj(X)�| LA)
i(⊥) v ĩnj(Cε) and show that T(ĩnj(X)�| LA)

i+1(⊥) v

ĩnj(Cε). At ~̀ ∈ LA, by Lemma 20 we have that T(ĩnj(X)�| LA)
i+1(⊥)[~̀] = ĩnj(X)�| LA [~̀] =

τ̃(X[~̀]) v τ̃(Cε[~̀]) = ĩnj(Cε)[~̀]. It remains to show that the inequality holds

at some ~̀ ∈ LF. By expanding definitions we have: T(ĩnj(X)�| LA)
i+1(⊥)[~̀] =

I>(T(ĩnj(X)�| LA)
i(⊥))[~̀] v I>(ĩnj(C

ε))[~̀] = C(Cε)[~̀] = ĩnj(C(Cε))[~̀] = ĩnj(Cε)[~̀],

where the inequality holds from the monotonicity of I> and the induction hypoth-

esis, and the final equality comes from the definition of Cε as a fixed point of C.

Lemma 24. ∀i ∈N,X : R.X v Cε ⇒ Ui(înj(X)) v înj(Cε)

Proof. By induction on i.

Case i = 0: Trivial, by the monotonicity of înj.

254

Case i+ 1: By a similar argument to that made in Lemma 23, except on the monotonicity

of F̂.

We next prove the following theorem:

Theorem 14. ∀δ ∈ µ.Mδ v Cε

Proof. By transfinite induction on δ.

Case δ = 0: Trivial as M0 = ⊥.

Case δ+ 1: It sufficient to show that ∀~̀.Mδ+1[~̀] v Cε[~̀]. We proceed by the partition of

~̀:

Subcase ~̀ ∈ LA: Mδ+1[~̀] = [
⊔
i<ωU

i(înj(Mδ))][~̀] v înj(Cε)[~̀] = Cε[~̀], where the

inequality holds from using the inductive hypothesis and Lemma 24 to show

that înj(Cε)[~̀] is an upper bound and thus greater than the least upper bound.

Subcase ` ∈ LF: By a similar argument to the LA case, but using Lemma 23.

Case δ = λ: : By the transfinite hypothesis, ∀α < λ.Mα v Cε, thus:
⊔
α<λM

α v Cε.

Corollary 14.1. Mε v Cε

Proof. Follows immediately from Theorem 14 and the definition of Mε as the limit of the

sequence Mδ∈µ.

B.3.4 Proof of Theorem 10

Immediate from the definitions of lfpM = Mε and lfpC = Cε, anti-symmetry, Theo-

rem 13, and Corollary 14.1.

255

B.3.5 Fixpoints in the Abstract Interpreter

If F̂ is upper-ω-continuous, then the sequence Ui(înj(Mδ)) converges to a fixpoint for all

δ. To show this result, it is sufficient to show that the sequence Ui(înj(Mδ)) is increasing

for all δ. The result will then follow from a modified version of Kleene’s fixpoint theorem.

In the following, M̂δ denotes înj(Mδ).

Lemma 25. ∀δ,k.Uk(M̂δ) v M̂δ+1

Proof. By cases. If k = 0, then the result is immediate, as Mδ is increasing, înj is mono-

tone.

For k > 0, we establish the result pointwise. At ~̀ ∈ LF, Uk(M̂δ)[~̀] = M̂δ[~̀], whence

the inequality holds by the reasoning above. At ~̀ ∈ LA, we have:

Uk(M̂δ)[~̀] v
⊔
i

Ui(M̂δ)[~̀] = Mδ+1[~̀] = înj(Mδ+1)[~̀]

Next define the following monotone function PF : R→ R:

PF = λ〈m̃, m̂〉.〈m̃,U(înj(〈m̃, m̂〉))|LA〉

Lemma 26. ∀δ.Mδ v PF(Mδ)

Proof. By transfinite induction.

Case δ = 0: Trivial.

Case δ+ 1: The inequality is immediate at all points in LF. We must therefore establish

the inequality at some ~̀ ∈ LA.

As Mδ+1[~̀] =
⊔
iU

i(M̂δ)[~̀], it suffices to show that for all i, Ui(M̂δ)[~̀] v U(M̂δ+1)[~̀] =

PF(Mδ+1)[~̀]. We consider the form of i.

256

Subcase i = 0: we must show that M̂δ[~̀] = Mδ[~̀] v U(M̂δ+1)[~̀]. By the induction

hypothesis, we have that Mδ v PF(Mδ), whence we have Mδ[~̀] v PF(Mδ)[~̀] =

U(înj(Mδ))[~̀] v U(înj(Mδ+1))[~̀], from the monotonicity of U and înj and the

fact that Mδ is inreasing.

Subcase i > 0: Then i = k + 1 for some k, whence we must show Ui(M̂δ)[~̀] =

U(Uk(M̂δ))[~̀] v U(M̂δ+1)[~̀]. By the monotonicity of U, it suffices to show that

Uk(M̂δ) v M̂δ+1, which holds from Lemma 25.

Case δ = λ: By the induction hypothesis, Mλ is defined as the least upper bound of

post-fixed points of PF, whence Mλ is also a post-fixed point of PF.

Theorem 15. ∀δ ∈ Ord, the sequence Ui(M̂δ) is increasing.

Proof. We will prove the sequence increasing by induction on i for some arbitrary δ.

Case i = 0: The inequality is immediate at ~̀ ∈ LF. At ~̀ ∈ LA, we have: înj(Mδ)[~̀] =

Mδ[~̀] v PF(Mδ)[~̀] = U(înj(Mδ))[~̀] = U1(M̂δ)[~̀] by Lemma 26.

Case i+ 1: Immediate from the monotonicity of U and the induction hypothesis.

257

B.4 Formalisms, Soundness, and Termination of Widening Iteration

We first define the instrumented semantic functions and extend the iteration functions

defined in Appendix B.3:

F̂O(X) =

X[
~̀]ÔF̂(X)[~̀] ~̀ ∈WA

F̂(X)[~̀] o.w.
IO>(X) =

X[
~̀]ÕI>(X)[~̀] ~̀ ∈WF

I>(X)[~̀] o.w.

TO(m)(X) = m�| LA t I
O
>(X)�| LF UO(X) = X�| LF t F̂O(X)�| LA

MO(X) =
〈 ⊔
i<ω

UiO(înj(X))|LA , X|LF t
⊔
i<ω

TO(ĩnj(X)|LA)
i(⊥)|LF

〉

We recall that Ô is a widening operator on abstract states provided by the analysis,

and Õ is the widening operator on mostly-concrete states, defined as

〈mf,ma〉Õ〈m ′f,m ′a〉 =
〈(
λx : Xf.

mf m ′f[x] v mf[x]

>F o.w.

)
,
(
λx : Xa.ma[x]OÂm

′
a[x]
)〉

where OÂ is a widening operator on values from Â provided by the analysis. We

assume that ⊥OÂ x = x and similarly that ⊥Ôx = x. We use the following definition of

widening operators. Both Ô and OÂ must be upper bound operators and further for any

increasing sequence xi, the sequence xO0 = x0; xOi+1 = xOi Oxi+1 must converge in finite

time (and similarly for OÂ). We say an infinite sequence xi converges in finite time if

there is some index k such that ∀j > k.xj = xk.

These functions mirror the definitions in Appendix B.3, with two key differences.

First, F̂O and IO> apply the widening operator at the widening points, which ensures

termination (as we prove below). In addition, MO extends the mostly-concrete iteration

term to join the results of mostly-concrete iteration with the input states. This joining

ensures that the iteration is increasing, which is a key condition of our termination

proofs.

258

B.4.1 Soundness

We first prove the soundness of the widening version of subfixpoint iteration. Define a

sequence Mδ∈µ
O as:

M0
O = ⊥ Mδ+1

O =MO(M
δ
O) Mλ

O =
⊔
β<λ

Mβ
O

We have shown that this sequence over-approximates the sequence Mδ as follows:

Theorem 16. ∀δ.Mδ vMδ
O

Lemma 27. ∀i ∈N,m,m ′ : R̃.m v m ′ ⇒ T(m)i(⊥) v TO(m ′)i(⊥)

Proof. By induction on i.

Case i = 0: Trivial

Case i+ 1: For the values at ~̀ ∈ LA, the inequality is immediate by the assumption onm

and m ′. It remains to show that the inequality holds at some arbitrary ~̀ ∈ LF. For

~̀ ∈WF, we have by the induction hypothesis T(m)i(⊥) v TO(m ′)i(⊥) whence from

the monotonicity of I> we therefore have I>(T(m)i(⊥)) v I>(TO(m ′)i(⊥)), and thus:

T(m)i+1(⊥)[~̀] = I>(T(m)i(⊥))[~̀] v I>(TO(m ′)i(⊥))[~̀] v TO(m ′)i(⊥)[~̀]ÕI>(TO(m ′)i(⊥))[~̀] =

TO(m
′)i+1(⊥), where the inequality holds as Õ is an upper bound operator. For

~̀ 6∈ WF, then the result holds from the induction hypothesis and the monotonicity

of I>.

Lemma 28. ∀i ∈N,m,m ′ : R̂.m v m ′ ⇒ Ui(m) v UiO(m ′)

Proof. By symmetric reasoning to that in Lemma 27, except using the monotonicity of F̂

and that Ô is an upper bound operator.

259

Proof of Theorem 16. By transfinite induction. In the inductive step, the inductive hy-

pothesis, monotonicity of înj and ĩnj, and Lemmas 27 and 28 give that the subfixpoint

terms of Mδ+1 are smaller than those in Mδ+1
O giving the desired result. The limit case

follows from the definition of least upper bounds.

As a direct corollary of this theorem, we have: lfpC = lfpM = Mε vMε
O. If we show

that if the sequence Mδ
O converges in a finite number of k steps to a fixed-point of MO,

we will then have: lfpC = lfpM = Mε vMε
O = Mk

O, i.e., αF(lfp F) vMk
O.

B.4.2 Termination

We first show that ∀i ∈N, the sequence Mi
O is increasing.

Lemma 29. ∀j.Mj
O vMj+1

O

Proof. Consider an arbitrary j. We establish the inequality pointwise:

Case ~̀ ∈ LF: Mj
O[~̀] = Mj

O|LF[
~̀] vMj

O|LF[
~̀]t

⊔
i<ω TO(ĩnj(M

j
O)�| LA)

i(⊥)|LF[~̀] = Mj+1
O [~̀]

Case ~̀ ∈ LA: Mj
O[~̀] = înj(M

j
O)[~̀] = U

0
O(înj(M

j
O))[~̀] v

⊔
i<ωU

i
O(înj(M

j
O))[~̀] = Mj+1

O [~̀]

We next show that every subfixpoint iteration in the abstract interpreter terminates.

Define the following family of sequences indexed by n:

P(n,j) = U
j
O(înj(M

n
O))

We need the following lemma.

Lemma 30.

1. ∀n.UnO(înj(Mn
O)) v înj(Mn+1

O)

2. The sequence UjO(înj(M0
O = ⊥R)) is increasing.

260

3. For all n and ~̀ ∈ LA, if all sequences P(m<n,j) are increasing and converge in a finite

number of steps, then înj(Mn
O)[~̀] = ⊥Ŝ or ∃k < n, j > 0.înj(Mn

O)[~̀] = U
j
O(înj(M

k
O))[~̀].

4. For all n, if all sequences P(m6n,j) are increasing and converge in a finite number of steps,

then the sequence UjO(înj(M
n+1
O)) is increasing.

Proof.

1. At ~̀ ∈ LF, we have by a simple inductive argument thatUnO(înj(Mn
O))[~̀] = înj(M

n
O)[~̀] v

înj(Mn+1
O)[~̀] from Lemma 29. At ~̀ ∈ LA, we have: UnO(înj(Mn

O))[~̀] v
⊔
i<ωU

i
O(înj(M

n
O))[~̀] =

Mn+1
O [~̀] = înj(Mn+1

O)[~̀].

2. By straightforward induction on j, using the fact that F̂ is monotone and that Ô is

an upper bound operator. The base case holds because at ~̀ ∈ LA, înj(⊥R)[~̀] = ⊥Ŝ
and for ~̀ ∈ LF ∀i.UiO(înj(⊥R))[~̀] = τ̂(⊥S̃).

3. By induction on n.

Case n = 0: Then înj(M0
O)[~̀] = ⊥R[~̀] = ⊥Ŝ, trivially giving the desired result.

Case n+ 1: Then înj(Mn+1
O)[~̀] =

⊔
i<ωU

i
O(înj(M

n
O))[~̀]. By hypothesis, the se-

quence UiO(înj(Mn
O)) is increasing and converges in a finite number of steps,

whence ∃p.
⊔
i<ωU

i
O(înj(M

n
O))[~̀] = U

p
O(înj(M

n
O))[~̀]. If p = 0, then the induc-

tive hypothesis gives us the desired result (it is immediate that if the sequences

P(m<n+1,j) are terminating increasing sequences, then the sequences P(m<n,j)

must be as well). Otherwise, we take k = n, j = p completing the proof.

4. By induction on j.

Case j = 0: We must show that înj(Mn+1
O) v UO(înj(Mn+1

O)). By cases:

Subcase ~̀ ∈WA: UO(înj(Mn+1
O))[~̀] = F̂O(înj(M

n+1
O))[~̀] = înj(Mn+1

O)[~̀]ÔF̂(înj(Mn+1
O))[~̀],

and we have the required inequality from Ô being an upper bound oper-

ator.

261

Subcase ~̀ ∈ LA ∧~̀ 6∈WA: We must show that

înj(Mn+1
O)[~̀] v UO(înj(Mn+1

O))[~̀] = F̂(înj(Mn+1
O))[~̀]

By hypothesis, the sequences P(m6n,j) are increasing and converge in fi-

nite number of steps. As m 6 n implies m < n+ 1, we can satisfy the

hypothesis of part (3) for înj(Mn+1
O). Suppose then that înj(Mn+1

O)[~̀] = ⊥.

Then we trivially have înj(Mn+1
O)[~̀] = ⊥ v F̂(înj(Mn+1

O))[~̀]. Next, sup-

pose that there exists some k < n + 1, j > 0 such that înj(Mn+1
O)[~̀] =

U
j
O(înj(M

k
O))[~̀]. Expanding the definition of UO, we must then show that

U
j
O(înj(M

k
O))[~̀] = F̂(Uj−1O (înj(Mk

O)))[~̀] v F̂(înj(Mn
O))[~̀]. By part (1) and

Lemma 29, we have that Uj−1O (înj(Mk
O)) v înj(Mk+1

O) v înj(Mn+1
O), giv-

ing the desired result via monotonicity of F̂.

Subcase ~̀ ∈ LF: Trivial.

Case j+ 1: Immediate at ~̀ ∈WA from the definition of Ô as an upper bounds oper-

ator, trivial at ~̀ ∈ LF, and from the induction hypothesis and the monotonicity

of F̂ for ~̀ ∈ LA ∧~̀ 6∈WA.

We are now ready to prove that, for any n, P(n,j) converges in finite steps, i.e., the

abstract iteration terminates.

Theorem 17. ∀n.P(n,j) is an increasing sequence that converges in a finite number of steps.

Proof. By strong induction on n.

Case n = 0: Lemma 30 part (2) gives us that the sequence is increasing. To show that

the sequence converges in a finite number of steps, it suffices to show that all

labels in the widening set converge in a finite number of steps, whence the overall

termination will follow from the definiton of widening sets. Consider an arbitrary

262

~̀ ∈WA, and the values computed at each element of the sequence P(0,j).

P(0,0)[~̀] = înj(M
0
O)[~̀] = înj(⊥R)[~̀] = ⊥Ŝ

P(0,i+1)[~̀] = UO(U
i
O(înj(⊥R)))[~̀] = F̂O(U

i
O(înj(⊥R)))[~̀]

= UiO(înj(⊥R))[~̀]ÔF̂(U
i
O(înj(⊥R)))[~̀]

= P(0,i)[~̀]ÔF̂(U
i
O(înj(⊥R)))[~̀]

By the definition of widening operators, this sequence will converge in a finite

number of steps (that the sequence ⊥
Ŝ
, F̂(înj(⊥R)), . . . , F̂(U

n
O(înj(⊥R))) is increasing

follows from Lemma 30 part (2) and the monotonicity of F̂). Thus, all widening

points will converge in a finite number of steps, implying that P(0,j) converges.

Case n+ 1: We assume that all sequences P(m<n+1,j) are increasing and converge in a

finite number of steps. From Lemma 30 part (4), P(n+1,j) is increasing. To show

that P(n+1,j) converges in a finite number of steps, we will again show that any

arbitrary widening point ~̀ converges in a finite number of steps. Define a sequence

finitization operator bSc = 〈s0, . . . , sk−1〉 where si = Si+1 and k is defined as the

smallest natural number such that:

k > 1 ∀m > k.Sm = Sk

In other words, the finitization operator extracts a sequence of at least length one,

starting from the second element of the sequence, up to the first element after which

the sequence repeats. This operation is undefined on sequences that do not con-

verge in finite steps.

Define now the following sequence:

L =./m<n+1 bP(m,j)[~̀]c ./ P(n+1,j>1)[~̀]

where ./ denotes sequence concatenation. The bP(m,j)[~̀]c operation is well defined

from the induction hypothesis that all such sequences converge in finite steps.

As a result, L has a finite prefix of values before reaching elements drawn from

P(n+1,j)[~̀]. If we show that the sequence L converges in a finite number of steps,

263

this will in turn imply that P(n+1,j)[~̀] also converges in a finite number of steps. We

now show that Li>0 = Li−1ÔWi and L0 = W0, where Wi is an increasing sequence.

From the definition of widening operators, this sequence will converge and thus,

as argued above, will prove convergence of the sequence P(n+1,j)[~̀].

From the definition of L it is immediate that:

∀i.Li ≡ P(m,k)[~̀] = U
k
O(înj(M

m
O))[~̀] (for some m 6 n+ 1 and k > 1) (B.3)

∀i,k > 0,m 6 n+ 1.Li+1 ≡ Uk+1O (înj(Mm
O))[~̀]⇒ Li ≡ UkO(înj(Mm

O))[~̀] (B.4)

We will now show that for all i > 0, Li>0 is defined as P(m,k)[~̀] for some m 6 n+ 1

and k > 1, and further that Li = Li−1ÔF̂(P(m,k−1))[~̀].

Consider an arbitrary i > 0. Then Li = UkO(înj(M
m
O))[~̀],m 6 n + 1,k > 0 by

Equation (B.3). Suppose k 6= 1. Then k = j+ 1, and

U
j+1
O (înj(Mm

O))[~̀] = U
j
O(înj(M

m
O))[~̀]OF̂(U

j
O(înj(M

m
O))[~̀] = Li−1ÔF̂(P(m,k−1))[~̀]

where the final equality holds from the definition of P and (B.4) above.

Next, suppose that k = 1. Then

UO(înj(M
m
O))[~̀] = înj(M

m
O)[~̀]ÔF̂(înj(M

m
O))[~̀] = Mm

O [~̀]ÔF̂(înj(M
m
O))[~̀] = Mm

O [~̀]ÔF̂(P(m,k−1))[~̀]

We must show that Mm
O [~̀] = Li−1. First, observe thatm cannot be 0 by our assump-

tion that i > 0.

As i > 0, there must be some preceding element Li−1 and by definition this element

is the final element of bP(m−1,j)c. (This follows from the fact that P(m,1)[~̀] must be

the first element of one of the sequences that are concatenated together to form L.)

From the definition of bSc, this final element is P(m−1,p)[~̀], where p is the first index

greater than or equal to 1 after which the sequence P(m−1,j)[~̀] repeats infinitely.

Further, as the sequence P(m−1,j) is increasing by the induction hypothesis, we

have:

Mm
O [~̀] =

⊔
i<ω

P(m−1,i)[~̀] = P(m−1,p)[~̀] = Li−1

264

Finally, by expanding definitions we have:

L0 = P(0,1)[~̀] = F̂O(înj(M
0
O))[~̀] = înj(⊥R)[~̀]ÔF̂(înj(M

0
O))[~̀]

= F̂(U0O(înj(M
0
O)))[~̀] = F̂(P(0,0))[~̀]

We therefore define the sequence Wi as:

W0 = L0 = F̂(P(0,0))[~̀]

Wi+1 = F̂(P(m,k−1))[~̀] where Li+1 ≡ P(m,k)

It remains to show that this is an increasing sequence. From the definition of L, if

Wi ≡ F̂(P(m,k−1))[~̀] for some m 6 n+ 1 and k, then Wi+1 = F̂(P(m,k))[~̀] or Wi+1 =

F̂(P(m+1,1))[~̀]. By the monotonicity of F̂, it suffices to show that P(m,k−1) v P(m,k)

and that P(m,k−1) v P(m+1,1). For the former, if m < n+ 1 the result holds from

the induction hypothesis, otherwise if m = n+ 1 the result holds from Lemma 30

part (4). The latter is only possible if m < n+ 1. By Lemma 30 part (1), P(m,k−1) v

P(m+1,0) for any m. It remains to show that P(m+1,0) v P(m+1,1). This holds by

either the induction hypothesis (m < n) or Lemma 30 part (4) (m = n).

We next show that all iterations in the mostly-concrete interpreter converge in finite

time.

Lemma 31.

1. ∀m : R̃.TO(m)i(⊥) is increasing.

2. ∀m : R̃.TO(m)i(⊥) converges.

Proof.

1. By induction on i. The in the inductive step, for flow edges in WF the inequality is

due to the Õ being an upper bound operator, whereas for flow edges not in WF the

result holds from the monotonicity of I> and the IH.

265

2. As in Theorem 17, we consider an arbitrary widening point ~̀. Then the values com-

puted at each step during subfixpoint iteration, TO(m)i(⊥
R̃
)[~̀] form the following

sequence:

TO(m)0(⊥
R̃
)[~̀] = ⊥

S̃

TO(m)i+1(⊥
R̃
)[~̀] = TO(m)i(⊥

R̃
)[~̀]ÕI>(TO(m)i(⊥

R̃
))[~̀]

The sequence⊥
S̃
, I>(⊥R̃)[~̀], . . . , I>(TO(m)i(⊥

R̃
))[~̀] is increasing from the monotonic-

ity of I> and that TO(m)i(⊥
R̃
) is increasing proved in part (1) above. Thus the above

sequence converges after a finite number of steps, giving us the termination result.

Lemma 32. The sequence Mi
O|LA converges in a finite number of steps

Proof. By Theorem 17, as each subfixpoint iteration is finite, we can construct a sequence

similar to L in the proof Theorem 17. Using similar reasoning, we show that this se-

quence stabilizes in a finite number of steps. This implies that there is some index k,

such that when computing Mm
O |LA ,m > k, the values at all widening points in WA will

converge to the same values. This implies that after a k steps, the sequence Mk
O|LA

stabilizes.

Theorem 18. The sequence Mi
O converges in a finite number of steps.

Proof. We first note that, as IO> is deterministic, ifm|LA = m ′|LA then
⊔
i<ω TO(ĩnj(m)�| LA)

i(⊥) =⊔
i<ω TO(ĩnj(m

′)�| LA)
i(⊥) By Lemma 32, there is some k such that Mk

O|LA = Mk+1
O |LA =

Mk+2
O |LA . As Mk

O|LA = Mk+1
O |LA we have that⊔

i<ω

TO(ĩnj(M
k
O)�| LA)

i(⊥) =
⊔
i<ω

TO(ĩnj(M
k+1
O)�| LA)

i(⊥)

Consider next some arbitrary ~̀ ∈ LF. Let Uk+1 =
⊔
i<ω TO(ĩnj(M

k
O)�| LA)

i(⊥)[~̀] and

Uk+2 =
⊔
i<ω TO(ĩnj(M

k+1
O)�| LA)

i(⊥)[~̀]. By the above equality, we have that Uk+1 = Uk+2,

266

and thus:

Mk+1
O [~̀] = Mk

O[~̀]tUk+1 = Mk
O[~̀]tUk+1 tUk+1 =

(Mk
O[~̀]tUk+1)tUk+2 = Mk+1

O [~̀]tUk+2 = Mk+2
O [~̀]

We therefore have Mk+1
O |LA = Mk+2

O |LA and Mk+1
O |LF = Mk+2

O |LF , whence Mk+1
O = Mk+2

O =

MO(M
k+1
O). Thus, in k+ 1 steps, the sequence reaches a fixpoint of MO, and thus the

entire sequence stabilizes in finite time.

267

Appendix C

PROOFS FOR CHAPTER 7

This chapter contains initial proofs of correctness for the scheduling algorithm de-

scribed in Chapter 7. In particular, it proves that loop inconsistent executions are im-

possible with our scheduling approach. It also contains an initial optimality argument.

In many places we rely on natural language theorem statements and arguments: fully

formalizing these theorems and proofs is left for future work.

General Notation We will denote by a π→ b a path π from a to b. For some path π,

denote by π(i) the ith element of the sequence, and by |π| the length of the sequence π.

C.1 Loop Consistency

Associate with thread t the loop counter vector It of length k, where k is the number

of unique loop headers in a method. We will denote by Ih the counter associated with

the loop with header h in vector I (we leave the mapping from headers to numerical

positions unspecified). When a thread t steps from point a to point b, the new value

value of Iht becomes:

ι if a ∈ L(h)∧ b 6∈ L(h)∧ b 6= h (C.1)

0 if b = h∧ Iht = ι (C.2)

Iht + 1 if a = h∧ b ∈ L(h) (C.3)

Iht otherwise (C.4)

Denote by Ja → bK the pointwise lifting of the above transformation to vectors, and

JπK the composition of the pairwise edge transformers. We say a loop counter is live

268

(indicating a thread with that counter is actively executing the loop) if the counter is

neither 0 nor ι.

An execution state is loop consistent if, for all distinct pairs of p and q, Ip ∼ Iq where

I1 ∼ I2 is defined as:

∀h ∈ dom(I1).Ih1 = Ih2 ∨ I1 = ι∨ Ih2 = ι

C.2 Proofs

As in Chapter 7, we will abuse notation and use the name of a thread of execution to

also denote the program location where it is paused.

We first review some helpful properties of loops and paths.

Lemma 33. If there exists a cycle free path π from a to b that involves a backjump to h, then a

is contained with a loop with header h.

Proof. Let x be the predecessor to the backjump to h. Then x must be reachable from a.

As the path is loop free, the path from a to x must not contain h. There must therefore

be a path from a to h following the predecessors of a. If not, we could traverse the

predecessor relation from a to method entry. Let this (hypothetical) path without h from

the entry to a be π ′. If this path existed, we could extend π ′ with the h-free path from a

to x, contradicting our (implicit) assumption that x is dominated by h.

Lemma 34. If every loop free path π from a loop header h to x traverses a backjump, then

x 6∈ L(h).

Proof. Suppose not. Let h ′ be the header targeted by the backjump. As π is cycle free, by

Lemma 33, h ∈ L(h ′). By assumed well nesting, we have that h ′ 6∈ L(h). Let π ′ be the

remainder of the path from h ′ to x. As h ′ is not within h’s body, we must have that π ′

passes the header h to reach x, but this implies π has a cycle, a contradiction.

Lemma 35. If for some a and b such that succ+(a,b)∧ b 6∈ D+(a) and b is not within a loop

with a as a header, then:

269

1. a is contained within a loop, i.e. ∃h.a ∈ L(h)

2. b is within a loop that also contains a, i.e., ∃h ′.{b,a} ⊆ L(h ′)

3. a can only reach b by following a back jump and entering a loop body containing b, i.e.,

∀π.a π→ b⇒

∃i.doms(π(i+ 1),π(i))∧ |π| > i+ 1∧
(
∀j > i+ 1.π(j) ∈ L(π(i+ 1))

)
Proof.

1. As b is not in a’s loop, then b 6∈ D+(a) ∧ b 6∈ L(a) ⇒ b 6∈ (succ+↓ (a) ∪H(a)).

However, as b ∈ succ+(a), all paths from a to b must traverse a back jump. Thus,

by Lemma 33 a must be within a loop.

2. Let π be a loop free path from a to b. As b 6∈ D+(a), there must be at least one

backjump along all paths from a to b (otherwise we would have b ∈ succ+↓ (a) ⇒

b ∈ D+(a) contradicting our assumption). Let h be the target of the final back jump

encountered on π. By Lemma 33, a ∈ L(h) ⇒ h ∈ D(a). As there are no further

back jumps from h to b, we have b ∈ succ+↓ (h). If we have that b ∈ D(h), we would

have b ∈ D+(a) contradicting our assumption. b ∈ succ+↓ (h)∧ b 6∈ D(h) can only

be true if b ∈ L(h), i.e., H(a)∩H(b) 6= ∅.

3. An immediate corollary of the above. Note that the suffix of the path from h to b

lies entirely within L(h). If it did not, we would have an execution that could leave

L(h) and then re-enter without traversing the header h, an impossibility (recall that

π is cycle free, and h has been already been visited).

Lemma 36. If for some a and b such that succ+(a,b)∧ b 6∈ D+(a), then either:

270

1. The conditions of Lemma 35 apply, OR

2. a is the header of a loop containing b, and reaching b requires entering the loop of a.

In either case, if succ+(a,b)∧ b 6∈ D+(a), then to reach b from a requires entering a loop

containing b, i.e.

succ+(a,b)∧ b 6∈ D+(a)⇒

∀π.a π→ b⇒

∃i,h.|π| > i∧ π(i) = h∧ b ∈ L(h)∧ ∀j > i.π(j) ∈ L(h)

Proof. If reaching b from a always requires traversing a backjump, then b cannot be

within a’s loop (by Lemma 34), and Lemma 35 applies.

Otherwise, for a to acyclically reach b and still have b 6∈ D+(a) requires b ∈ L(a).

Then it is immediate that reaching b from a requires entering a’s loop body.

We now prove that our scheduling algorithm enforces loop consistency.

Lemma 37. Suppose we are scheduling an exection of a thread paused at a loop header h with

Ih = 0. Let p be some paused execution point such that there is a path from p to h. Then there

exists some point q along any path from p to h such that q ∈ D+(h).

Proof. As h is being scheduled, we must have that h 6∈ D+(p). But as p reaches h, we

have by Lemma 36 that to reach h from p, execution must enter a loop containing h by

passing through a loop header h ′. However, as h ∈ L(h ′)⇒ h ′ ∈ H(h)⇒ h ′ ∈ D+(h) as

required.

Corollary 37.1. If execution of a loop h begins and there is some paused thread at p where

p
π→ h, then ∀b ∈ L(h).∃i.π(i) ∈ D+(b).

Proof. By Lemma 37, there exists some h ′ ∈ D+(h) along the path from p to h. As

b ∈ L(h), we have h ∈ D+(b), whence h ′ ∈ D+(b).

271

Corollary 37.1 implies that during execution of loop ` no thread outside ` may reach

`’s header.

Lemma 38. During execution of a loop with header h, if a thread within the loop exits the loop,

it may not return to the loop header while the loop is still executing.

Proof. Let e, e 6∈ L(h)∧ e 6= h be the first join point reached after exiting the loop. Then

h ∈ D+(e). To see why, consider the start point of the thread that exits the loop. If it was

some b ∈ L(h),b 6= h observe that for any member of a loop body, there is a backjump

free path from h to b (by Lemma 34). We therefore consider the path from h to e. If

the path was backjump free, then e ∈ succ+↓ (h), and as e 6∈ L(h), we have e ∈ D+(h).

Otherwise, if it was a backjump, then by Lemma 33 e is the header to a loop containing

h, whence e ∈ D+(h). Further, we have ∀b ′ ∈ L(h).h ∈ D+(b ′)⇒ e ∈ D+(b ′). Thus, the

thread at e may not be scheduled until the loop is completed, and by extension may not

reach h.

Together, Corollary 37.1 and Lemma 38 imply that during loop execution no thread

with Ih = ι may reach the loop header; i.e., any path of execution that could reach the

header of the loop from outside the loop body will eventually be blocked by threads

either at the loop header or within the body.

We can now prove the following property:

Theorem 19. For some loop consistent execution state with threads t1, . . . , tn, if ti can be sched-

uled and steps, the resulting state will be loop consistent.

Proof. Call the scheduled point p. Let the loop vector at this point be Ip. After stepping,

the system will take n > 0 paths to a m 6 n join points. Let It be the resulting loop

vector produced along one such path π, Iq be an unstepped loop vector at point q, and

Iu be another result loop vector produced along a different path π ′. When transforming

Ip into It along π, the value for an arbitrary header h could have been transformed

according to the following (mutually exclusive) situations:

272

Entering & Exiting h’s loop π originated at h, entered the loop, and then exited it. Then

Iht = ι and Iht ∼ Ihu ∼ Ihq trivially.

Entering h Then Iht = Ihp + 1 and p = h. Consider Ihq. As the source state is consistent,

Ihq ∼ Ihp, whence Ihq = ι or q ∈ L(h)⇒ h ∈ D+(q). In the former case, the property

holds trivially, in the latter case we could not have stepped. Now consider Ihu.

If π ′ entered then exited the loop, or skipped the loop (see below), then Ihu = ι

as required. Otherwise, π ′ must have entered the loop without exiting, whence

Ihu = Ih+ 1 as required. Finally, note that if π or π ′ terminated at h (i.e., the thread

looped back around to the header) the above reasoning holds as the counter is not

reset on a backjump.

Skipping h Then π began at the header for h but then skipped the loop, reaching some

program point not in the loop body. Then Iht = ι, giving a trivial result. Note that

if π skipped the loop, it cannot also hit the loop header (see below), as this would

imply a loop back to h that is not within h’s body.

Exiting h Then Iht = ι, giving a trivial result. As above, π may not exit a loop and then

hit the header, as this would imply there exists a path from the body of the loop

which exits the loop and returns to the loop header without hitting an intervening

join point, an impossibility.

Back jump to h Then Iht = Ihp, Iht 6= 0, Ihp 6= ι. By assumption Ihp ∼ Ihq whence Iht ∼ Ihq.

Consider Ihu. As π neither entered or skipped the loop, p 6= h, whence π ′ could

not have entered or skipped the loop either. π ′ may not have hit the header h (see

below) as this would imply that π ′ either began outside the loop or left the loop

and returned to h without hitting a join point (both impossibilities). Thus, π ′ may

only have backjumped, hit a join point within h, or exited the loop, all of which

give Ihu = Ihq preserving the result trivially.

273

Hit h’s header Then π reached the header of h’s loop from outside the body of the loop

and Iht = 0. Then Ihp = ι and p 6= h and p 6∈ L(h). Observe that Ihq = 0∨ Ihq = ι.

Otherwise, the loop h is actively executing, and the point p could not have been

scheduled (as argued above). Thus Iht ∼ Ihq. Finally, π ′ hits h and we have Ihu = 0 ∼

Iht , or π ′ does not hit h and Ihu = ι ∼ Iht .

No effect Then Iht = Ihp = Iqh. It remains to show that I ′h ∼ I ′′h. As π did not enter or

skip h, we may conclude that p 6= h. Then π ′ either exits h (giving a trivial result),

backjumps to h (giving Ihu = Ihp as required), hits h (which is consistent by the

reasoning in the above case), or π ′ does not have any effect on h, whence Ihu = Ihp,

trivially satsifying the result.

As the inital state with a single thread at method entry with all loop counters set to ι

is trivially loop consistent, the above is an inductive argument that any state yielded by

our scheduling algorithm will be loop consistent.

Theorem 20. From a loop consistent state, if there exists a loop consistent schedule such that

a thread t paused at q may eventually join with a thread t ′ paused at p without violating loop

consistency, then q ∈ D+(p).

Proof. Suppose not. Then q may reach p but q 6∈ D+(p). As p may reach q, we have

that p ∈ succ+(p), whence Lemma 36 applies, so there exists some h such that p ∈ L(h)

and any path from q to p traverses h. By assumption, t must be able to reach p without

violating loop consistency. Let our initial loop vector state at q in thread t be Iq, and the

initial state at p be Ip. Further, Ihq ∼ Ihp ∧ Ihp > 0.

Consider now the effect on the loop vector of t when it traverses h for the final time

(by Lemma 36 t must traverse h at least once). If t reached h from outside the loop, then

Ihp will have been set to 0, violating loop consistency (as Ihp > 0). Then the final traversal

must originate from within the body of the loop, and the final traversal occurs when

t has a live counter for h. But then t cannot traverse the header h and enter the loop

274

body, as this will increment the loop counter for h. Then either the source counter is

inconsistent with Ihp or the result counter will be. Thus we conclude that t cannot reach

p without violating loop consistency, a contradiction.

Theorem 20 implies that our scheduling algorithm will never schedule a thread for

execution if another thread could reach it without violating loop consistency. By the

same argument, a thread cannot advance past a potential join point until the scheduling

algorithm system statically proves that no live threads may reach it.

	Acknowledgments
	Dedication
	Introduction and Thesis
	Thesis Statement
	Contributions
	Structure of This Document and Relationship to Existing Work

	Dynamic Configuration Update Correctness and Dynamic Checking
	Introduction
	Correctness Conditions for Dynamic Configuration Updates
	Technique
	Automated Bug Avoidance and Repair
	Implementation
	Evaluation
	Conclusions

	Static Verification of External Resource Consistency
	Introduction
	At-Most-Once Problems
	The Legato Analysis
	Interprocedural Analysis
	Implementation and Challenges
	Evaluation
	Conclusion

	Related Work for Dynamic External Resources
	Whole-Program Static Analysis of Modern Applications
	Introduction
	Static Analysis Challenges
	Conclusion

	Hybrid Mostly-Concrete and Abstract Interpretation
	Introduction
	Overview
	Preliminary Definitions
	Combined Interpretation
	Procedures
	Iteration Strategy
	Widening and Finitization
	Extensions for a Realistic Prototype
	Evaluation
	Conclusion

	Supporting the Full JVM
	Introduction
	Java Path Finder
	Current Progress
	Scheduling Execution
	Future Challenges and Potential Solutions
	Conclusion

	Related Work in Whole-Program Static Analysis
	Conclusion and Future Work
	Techniques
	Future Directions

	Bibliography
	Proofs for Chapter 3
	Preliminaries
	Concrete Instrumented Semantics
	Abstract Semantics
	Proof

	Proofs for Chapter 6
	Proofs for Section 6.4
	Proofs For Section 6.5
	Formalisms and Proofs for Subfixpoint Iteration
	Formalisms, Soundness, and Termination of Widening Iteration

	Proofs for Chapter 7
	Loop Consistency
	Proofs

